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Salt and Streams: Assessing ecological stress in New Hampshire watersheds at  

community, population, and molecular levels  

  

Problem   

New Hampshire’s climate is expected to resemble that of the US Mid-Atlantic by 2100 

(USGCRP 2009). With this shift comes increased air temperatures, less snow pack, more ice 

storms, and more rain on snow events. From a freshwater ecology perspective, much of central 

and northern New Hampshire’s streams are currently populated by coldwater species (e.g., Brook 

trout; Neils 2009). As a result of increasing air temperatures, stream temperature will likely 

increase; however, the increase will vary among streams (Kelleher et al. 2011). For many 

species, this thermal shift may be within their fundamental tolerance range (e.g., 21°C thermal 

maxima for Brook Trout), barring additional physiological stress.  However, growth in 

development (e.g., roads, housing) and energy production (mining, fracking) in northeastern 

states is causing additional stress on freshwater biota (Van Meter et al. 2011, Kelting et al. 2012). 

Among emerging concerns are the short-term and cumulative impacts of thermal and salinity 

stress on freshwater resources and biota (Findlay and Kelley 2011, Cuffney et al. 2010, Van 

Meter et al. 2011, Dalinsky et al. 2014, Stitt et al. 2014).   

Recently it has been reported that salts are infiltrating into subsurface flow and 

groundwater before reaching streams (Daley et al. 2009). The infiltration of salts into soil and 

retention in groundwater systems adds a lag to the emergence of salts in streams, elevating Cl 

concentrations into summer months (Williams et al. 2000, Findlay et al. 2011, Kelting et al. 

2012). The impacts of thermal variability and salt loading on freshwater biota have garnered 

attention and study in northern states, but it remains unclear how the synergy of salt and thermal 

stressors impact biota across the community, population and molecular levels.   

Traditionally, biotic response to water quality degradation is measured using broad-based 

community metrics (e.g., Simpson’s Index of Diversity) and/or assessing populations of select 

bio-indicator species (e.g., EPT= the macroinvertebrate orders of Ephemeroptera, Plecoptera, and 

Tricoptera). Rapid biological assessments examine community composition and the presence of 

indicator species to assess overall stress (Friberg et al. 2011); however, these methods are largely 

reliant on the loss of individuals and/or species, which could have cascading effects on 

biodiversity and the ecological function of streams. In order to avoid the potentially cataclysmic 

effects of osmo-thermal stress on NH streams, we need studies that investigate the biotic 

response along a gradient of salt and thermal stress. However, to truly avert the loss of species 

and ecosystem function, we need to develop techniques that will provide an early-warning signal 

of ecosystems in jeopardy.   

  

Objectives  

The goal of this project was to enhance biomonitoring efforts and early detection of 

thermal and salt stress on stream biodiversity in New Hampshire. To achieve this, our objectives 

were to:   

1) Evaluate differences in stream macroinvertebrate communities along a thermal-salt 

stress gradient. We assessed macroinvertebrate community composition in ten 1st to 4th order 

wadeable streams across NH that vary along a thermal-salt stress gradient (Figure 1).  
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2) Evaluate sub-lethal osmotic stress in mayfly larvae by quantifying HSP expression in 

mayfiles. This objective was pursued by first conducting in-lab salt exposure trials using 

nymphal mayflies to create salt-stress response curves. The in-lab exposure trials were 

followed by snapshot expression profiles from field caught individuals. Mayflies are a 

sensitive, yet very important source of prey in northern streams; therefore, the development of 

stress protein expression metrics in mayfly nymphs holds promise as a sensitive, early stage, 

and rigorous measure of the biotic impacts of salt load on freshwater habitats (Bauernfeind and 

Moog 2000, DeJong et al. 2006).  

3) Compare and evaluate benthic macroinvertebrate sampling techniques and potential 

indicator taxa for salt stress. The NH Department of Environmental Services (NHDES)– 

Biomonitoring program has adopted a rock basket approach for assessing water quality using 

indicator taxa and community metrics. We set out to compare the rock basket approach to 

kicknetting over the months of May – October to evaluate their ability to detect small changes 

in community composition that may be attributed to elevated salt or temperature.   

  

  

Methods  

  

Site selection  

Field sites were selected by using GIS to overlay the LoVoTECS network of stream monitoring 

sites with fish sample sites between 2009 and 2015. From this subset of NH streams, we selected 

sites based on median chloride concentrations derived from snapshot water chemistry data 

collected in May and July 2013 and July, Sept, Oct 2014. Our ten sites ranged  

  
Figure 1: Network of LoVoTEC monitoring sites overlaid with NH Fish and Game Dept fish 

sampling sites between 2009-2014 (LEFT); Ten Hot, Salty Bugs sampling sites between May and 

October 2016.  
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from 4.35-52.6 mg/L of Chloride during this period. The ten sites represent a range of human 

impact; some sites have roads and development, and some sites have little to no human impact. 

Two of our sites, Mad River in Waterville Valley and Douglas Brook near the Kancamangus 

Highway are located in the White Mountain National Forest. The other stream sites are located 

near minor and major road systems, with minimal to moderate influence from road salts and other 

anthropogenic influences. The ten sites include: Halfway Brook and Shannon Brook in 

Moultonborough, Mad River in Waterville Valley, Douglas Brook in Bartlett, Beaver Brook in 

Keene, Wednesday Hill Brook in Lee, Pemigewasset River in Woodstock, Clay Brook in 

Plymouth, Otter Brook in Peterborough, and Sucker Brook in Franklin.   

Our research team adopted NAWQA and EPA Rapid Bio Assessment Macroinvertebrate 

Sampling protocols for multi-habitat kicknet sampling. We sampled each study stream once every 

month beginning in mid-May to September/October, 2016. At each site, we selected a 100meter 

reach that was largely representative of the stream habitat. This 100-m reach was established in 

close proximity to continuously logging specific conductance, water temperature, and water level 

sensors; most sites consisted of sample reaches that were 50-meters upstream and 50-meters 

downstream, or, where that was not feasible, 25-meters and 75-meters.  We sampled total of 10 

kicks over the 100-meter stream reach, sampling different habitats in approximate proportion to 

their representation of the total surface area of the reach. We determined this by assigning a 

percentage of each habitat type (cobble, sand, or large woody debris) totaling 100%. In cobble 

substrate/habitat, we chose to kick in riffles or runs. In sand substrate and habitat, we mainly 

kicked in runs and slow moving water since that is the main stream morphology for this type of 

habitat. We placed all macroinvertebrates in labeled containers with 70% ethanol for preservation. 

If there were any predator macroinvertebrates, such as the family Corydalidae, then we used an 

additional container to store the predators.   

In addition to kicknetting, we adopted the New Hampshire Department of Environmental 

Services (NHDES) biomonitoring program rock basket approach for macroinvertebrate sampling. 

At each site, we deployed 3 rock baskets side-by-side in a cobble and riffle habitat in close 

proximity to the continuously logging sensors. We collected rock baskets roughly every four 

weeks to collect macroinvertebrates from June to July for identification and enumeration. We left 

rock baskets in study streams for eight weeks from July/August to Septemeber/October to better 

compare results with NH DES Biomonitoring Program’s annual assessments. Our rock basket 

collection was similar to the NHDES sampling protocol, which included four, 5-gallon buckets, 3 

of which will hold the rock baskets themselves, and one bucket to rinse and store the rocks that 

have been examined. We filled three buckets with stream water a quarter full and facing upstream 

with the opening facing towards the rock basket. One person lifted each basket into the bucket, 

making sure to catch any debris that comes loose from the basket.  The research team thoroughly 

examined every rock in each basket, and the water in the bucket were filtered through a sieve. We 

placed all macroinvertebrates in rock basket labeled containers separately to the kick net samples, 

and stored in 70% ethanol to be preserved. We labeled containers with the correct site name and 

date sampled. Rocks were cleaned and put back into the baskets. The three baskets were then re-

deployed in the same location.   

  

Macroinvertebrate Identification   

We preserved our field samples in 70% ethanol, transported them to the laboratory, and 

sorted and identified by family using NAWQA and EPA protocol for macroinvertebrate sorting 
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and identification. References used to identify macroinvertebrates by family were from online 

sources from New England, and book sources, such as A Guide to Common Freshwater 

Invertebrates of North America, An Introduction to the Aquatic Insects of North America 4th 

Edition, and Freshwater Macroinvertebrates of Northeastern North America.   

  

Community analysis  

We calculated community composition metrics for each site visit, including: EPT family 

richness, % EPT, % Plecoptera, Philopotamidae (fingernet caddisfly; Tolerance Value: 0-4 

according to NHDES) relative abundance, % Chironomidae (non-biting midges) and compared 

these metrics to the chloride concentration from the same sample visit. In addition, we used 

multiple linear regression to assess the relationship between the given community metric and a 

suite of potentially influential environmental factors: discharge, reach area, latitude, elevation, 

water temperature, pH, dissolved oxygen, as well as chloride and sodium. Finally, we explored 

the data using Canonical Correspondence Analysis to investigate the influence of chloride and 

other environmental conditions on community composition.    

  

Salt exposure trials & HSP70 expression:   

This portion go the student focused on three primary research objectives: 1) examine the 

concentration/distribution of HSP70 across the mayfly body; 2) quantify dosage-dependent 

response curves of HSP70 expression to gradients of sodium chloride using in-lab mesocosms; 

and 3) examine in-situ levels of HSP70 expression among mayflies in 10 New Hampshire streams 

across a chloride gradient (Figure 2). For the first objective, individuals were collected from 

nearby streams and dissected into four body regions: 1) head, 2) legs, 3) gills, and 4) abdomen. 

For salt trials, individuals were collected and transported to micro aquaria setups using one-liter 

beakers as tanks. The source water for micro aquaria originated from the site itself in order to 

keep baseline ionic conditions constant. Leaf pack was also collected from sites along with 

specimens to provide a substrate for attachment and a food source. To best mimic running water 

conditions, battery-powered bubblers were placed in each beaker to create an oxygenated 

environment. Specimens were exposed to a gradient of salt concentrations following a three-day 

acclimation period in order to rule out the possibility of stress protein expression due to 

handling/travel. Preceding salt dosage, several specimens were immediately extracted for proteins 

to provide a measure of baseline HSP70 expression. Applied concentrations of salt have included 

150mg/L, 300mg/L, 400mg/L, 2000mg/L, and 4000mg/L; during these exposures, individuals 

were selected and proteins were extracted at the 1, 2, 4, and 168hr marks. In order to examine 

HSP70 levels across different field sites in NH, specimen collection occurred once per month 

May-September with a goal of no less than 15 specimens per site, per month. All protein 

extractions were carried out using physical homogenization coupled with T-PER extraction 

buffer. Quantification of proteins was then carried out by use of a bicinchonininc acid assay 

(BCA) assay to determine the concentrations of total protein extracted via a nanodrop 

spectrophotometer. Finally, HSP70 expression was observed by western-blotting technique, 

exposing proteins separated by size (electrophoresis through a gel medium) to a primary 

monoclonal HSP70 antibody for specific binding of the protein of interest.  
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Figure 2: Overview of HSP70 analysis.  

Principal Findings & Significance  

  

Chloride concentrations  

The summer of 2016 was an unusually dry season, leaving many of our study sites with 

water levels much lower than normal. Monthly snapshot water chemistry samples confirmed the 

initial classification of streams (based on snapshot sampling in 2013 and 2014). Our sites in 

southern NH (Keene and near Durham), generally had higher chloride concentrations that the 

other sites, but all sites had chloride levels below 60 mg/L (Figure 3). Even our highest chloride 

concentration was substantially below the EPA’s chronic toxicity concentration of 230 mg/L. 

Chloride concentrations increased at most sites throughout the sampling season, which we believe 

is attributed to low water levels. Low surface water inflow suggests that groundwater likely 

comprised a larger portion of stream water. Thus, increasing concentrations throughout the 

summer may help support the findings of Daily et al. (2009).   
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Figure 3: Snapshot sampling of chloride in 10 sample streams between May/June and 

September/October 2016.  

  

  

  

Chloride and Community Composition   

We found that chloride rarely explained a significant portion of the observed variation in 

the aforementioned community metrics used by NH DES Biomonitoring Program (Table 1 and 

graphs in Appendix A). We found the mean percent EPT at each site throughout the summer was 

inversely related to chloride; however, this relationship was weak and not statistically significant 

(Figure 4A-B). Interestingly, chloride was only a significant predictor of some metrics in late 

summer (late August through early October; Table 1). We also found an unexpected positive 

relationship between chloride concentration and the percent of the community comprised of 

Plecopterans. We are investigating this more to determine if the relationship was driven by a 

single family or if the unexpected positive relationship (more chloride, more Plecopterans) is 

consistent across the order. Either way, it is important to reconcile because percent of individuals 

from EPT orders are considered indicators of good water quality.   

  

  
   

Table 1: Summary of regression analyses of chloride and various macroinvertebrate community 

composition metrics.  
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The lack of a clear and consistent relationship between chloride and the community 

metrics prompted us to take a multiple linear regression approach to better understand the 

influencers of the observed macroinvertebrate communities. We took a backwards parameter 

selection approach, starting with the full (global) model that included discharge, stream area, as 

well as snapshot measures of water temperature (snapshot), pH, dissolved oxygen, chloride, and 

sodium. Sample month was also included because there is uncertainty in the timing of emergence 

for all families observed. Table 2 below provides a summary of the best model for each 

community metric. Again, chloride was a significant predictor of Plecopteran abundance, but the 

relationship was unexpectedly positive. Water temperature was the factor most frequently 

included in significant best models.  Month was also an important explanatory variable for 

percent Ephemeroptera and percent Tricoptera. We are in the process of investigating these 

patterns more thoroughly at the family level.   

Table 2: Summary of the ‘best’ multiple linear regression models for each community composition metric.  
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  We have yet to find a consistent model that explains the individual community metrics 

discussed. However, many of these metrics are intended to be used as indicators of water quality 

rather than explicit measures of aquatic biodiversity. To better understand how chloride may be 

influencing community composition and structure, we conducted a series of Canonical 

Correspondence analyses (CCAs). CCAs are a multivariate approach to identify the suite of 

variables that best explain the composition and structure of a given community. We conducted 

CCA analysis for families within each Order separately because we did not have a large enough 

samples size to allow proper CCA for all families identified.  Our results are preliminary at this 

time, and will be updated at the conclusion of this project.   

Temperature and Community Composition  
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Using the continuously logging air and water temperature sensors, we were able to calculate the 

sensitivity of stream temperature to changes in air temperature at each study stream (i.e., stream 

thermal sensitivity). Sensitivity is reflected in the slope of the air to water temperature 

relationship. Sensitivity ranged between 0.41 and 0.68. This can be interpreted as for every degree 

(F) increase in air temperature there was an observed increase in stream temperature between 0.41 

and 0.68 degree (F). Table 3 provides a summary of the slope and r2 

values for each relationship. There was not a direct relationship 

between thermal sensitivity and chloride concentrations, suggesting 

other factors may be affecting stream temperature aside from roadway 

density within the stream’s catchment.   

 The influence of stream temperature on macroinvertebrates was 

explored by focusing on the same key community composition metrics 

described for chloride analyses. We calculated the monthly mean, 7-

day mean, and the mean daily max stream temperature in 

correspondence to the macroinvertebrate sampling events. Table 4 

below provides the r2 values for the linear regression between each as 

well as the slope of the relationship. Several of the observed linear 

relationships were significant, albeit weak, and for some metrics the 

relationship was positive suggesting that warmer temperatures were 

associated with greater proportional abundance of specified taxa (e.g. 

Corydalidae and Philopotamidae). We found no notable relationships  

between common diversity metrics, such as Simpson’s Diversity, and 

stream temperature.    

We also explored the relationship between each of the community metrics and the 

sensitivity of the stream to air temperature changes. The rationale for this analysis was that 

temperature sensitive streams may experience drastic diurnal and weekly temperature changes 

during summer months. These drastic temperature shifts can be a disturbance to some aquatic 

organisms. Table 5 below provides the r2 values for the linear regression between each as well as 

the slope of the relationship. Interestingly, we found that the only community metrics to be 

significantly related to the thermal sensitivity of the stream were common diversity metrics 

Simpsons Index of Diversity and Shannon’s Diversity Index, both of which were not significantly 

related to temperature itself. For both metrics, the relationship was negative suggesting that the 

greater thermal sensitivity the less diverse the community’s composition of macroinvertebrates 

would be. We plan to explore this result more with more extensive family level analyses and 

multivariate approaches.   

Table 4: Summary of the linear relationships between stream temperature and community composition 

metrics. Bolded values note statistical significance (p < 0.05).  

Explanatory Variable Monthly Mean 168 Hour (7 day) 

Mean 

Average Daily Max 

Response Variable R-sq Slope R-sq Slope R-sq Slope 

% EPT 0.04 -0.673 0.07 -0.964 0.05 -0.726 

Table 3 Summary of 
stream thermal sensitivity.  

to changes in air 

temperature.  

Linear Regression - Mean 

Daily Water vs. Air  

Site R sq Slope 

BBU 0.39 0.424 

CBU 0.67 0.586 

DGB 0.74 0.584 

HYB 0.72 0.681 

MRL 0.54 0.412 

MRRT 0.60 0.520 

PRW 0.88 0.509 

SNB 0.70 0.612 

SUC 0.78 0.605 

WHB 0.95 0.506 
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% Plecoptera 0.13 -1.673 0.13 -1.731 0.13 -1.643 

% Philopotamidae 0.26 3.045 0.14 2.275 0.26 2.982 

% Leptophlebiidae 0.27 -0.922 0.19 -0.739 0.27 -0.905 

% Corydalidae 0.14 0.615 0.23 0.781 0.14 0.611 

Simpson's Index (1-D) 0.03 -0.005 0.01 -0.003 0.03 -0.005 

Shannon's Index (H) 0.02 -0.013 0.00 -0.003 0.01 -0.010 

Shannon's Evenness 0.06 -0.006 0.06 -0.006 0.07 -0.006 

Table 5: Summary of the linear relationships between stream thermal sensitivity (measured as the linear 

slope between air and water temperatures (Table 3) and various community composition metrics.  

Air vs. Water Slope Values as Explanatory  

Variable 

Explanatory Variable Slope 

Response Variable R-sq Slope 

% EPT 0.00 3.830 

% Plecoptera 0.09 -22.290 

% Philopotamidae 0.03 23.620 

% Leptophlebiidae 0.02 5.473 

% Corydalidae 0.01 3.663 

Simpson's Index (1-D) 0.15 -0.280 

Shannon's Index (H) 0.14 -0.867 

Shannon's Evenness 0.00 -0.090 

 HSP Analysis  

The first year of work has been largely devoted to developing a field to lab protocol for assessing  

HSP70 in macroinvertebrates, first with a focus on mayflies and later stoneflies. Thus far, the 

HSP70 stress response has been identified in both mayfly and stonefly nymphs across several 

regions of the body (Figure 5), as well as in whole insect based extractions. However, after little 

HSP70 expression was observed in several western blots (additional examples of HSP70 western 

blotting results are available in Appendix C) we have taken a series of approaches to rule out any 

possible researcher-based error. These included eliciting the HSP70 stress response, ensuring 

proteins were not degraded or aggregated prior to analysis, and exploring the possibility of 

minimal HSP70 expression being present. We are working through each step of the protocol to be 

sure that the method is appropriate and that the lack of HSP70 expression is a true result 
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suggesting low stress environments for mayflies, rather than one influenced by procedural 

decisions or chemical choices.   

  

Figure 5: Western blot results of HSP70 expression across the legs, head, and abdomen of mayflies 

collected in spring 2016.  

  

Recent western blots have begun to assert the possibility that this molecular response to 

salt stress may not reflect the true biological stress (or lack of stress) in the organisms. Current 

and future work involves pursuing longer lab exposures to mimic exposure to elevated salinity in 

the field (24hrs – 5 days), simultaneous exposures to different stressors (salt, heat, heat + salt), 

extractions of individuals at more frequent and longer time periods following exposure, and 

probing western blots with an additional HSP60 antibody (also known to be part of the stress 

response system). We will continue to explore differences in HSP expression across body parts. 

Work on the HSP70 protocol and lab trials continues and additional samples will be taken in 

summer 2017 for future snapshot assessment.   

  

  

Future work:  

This research will continue through summer of 2017 with funding from NH WRRC during 

which the same 10 sites will be revisited and the HSP70 lab protocol development and vetting 

will continue. HSP70 protocol will expand to include stoneflies and will focus on combining salt 
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and thermal stress.  We will specifically be examining interannual variability potential attributed 

to precipitation and stream water levels, which impact chloride  

concentrations and water temperature. Likewise, we will begin to assess the relationship between 

longer term exposure to elevated chloride and temperature using data from installed temperature 

and conductivity sensors.   
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Appendix A: Within season comparison of family level abundance observed through 

kicknet sampling for benthic macroinvertebrates at all ten study sites.  
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Appendix B: Univariate relationships between chloride and common benthic 

macroinvertebrate biomonitoring metrics. The graph illustrates the observed  

relationship across all sampling months in 2016. Yellow highlighted boxes in table 

suggest the relationship was significant and as hypothesized.  
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Appendix C: Preliminary results from HSP70 lab trials.  

  

Figure above: Preliminary results from HSP70 lab analysis of mayflies exposed to an acute dose of 4000 

mg/L of sodium chloride. The top blot captures the total protein in the sample, and the lower blot in each 

panel reflects the HSP70. The lane on the far left reflects the positive control for each blot.  
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Figure above: Preliminary results from HSP70 lab analysis of mayflies and stoneflies exposed to an acute 

dose of (potential) salt and temperature stress. The top blot captures the total protein in the sample, and  
the lower blot in each panel reflects the HSP70. The lane on the far right reflects the positive control for 

each blot.  
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