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ABSTRACT 

DETACHMENT OF ESCHERICIA COLI FROM SATURATED POROUS MEDIA  

IN LABORATORY COLUMNS 

by 

Jessica L. Strauss 

University of New Hampshire, December 2004 

Recent studies suggest that bacterial contamination of groundwater is a national 

health concern in the United States.  The movement of bacteria-laden water through soil 

and aquifer sediments often results in significant removal of bacteria from the aqueous 

phase, however, elevated concentrations of indicator organisms in drinking water aquifers 

are often detected and may be due, in part, to the slow release of sediment-associated 

bacteria. This condition, referred to as tailing, is caused by the detachment of previously 

attached cells over time, with aqueous concentrations often orders of magnitude below 

the peak concentration.  Extended tailing has often been observed in laboratory and field 

transport experiments.  The factors controlling bacterial attachment to aquifer sediments 

have been well investigated, however the processes controlling bacterial detachment from 

sediment surfaces at steady state are not well understood.   

To address this research gap in understanding bacterial detachment in the 

subsurface, laboratory column experiments were performed to investigate the attachment 

and detachment of a nonmotile strain of Escherichia coli cells at resting state through 

uncoated or Fe-coated quartz sand (350-500 µm diameter) in KCl solution at low or high 

ionic strength (0.001 M or 0.01 M).  For each experimental run, a pulse of 3[H]-labeled E. 

coli cells was injected into flow-through columns, and column effluent was sampled for 

~17-23 pore volumes (8.5-11.5 h).  To account for biological effects on detachment, 

 x 
 



experiments were also run using E. coli cells treated with 0.5% formaldehyde rendering 

them “dead”.  To calculate bacterial attachment and detachment rates, the one 

dimensional advection-dispersion equation modified to account for deposition and 

detachment was fit to the bacterial breakthrough curves (BTCs) for each treatment 

combination.  To compare protein composition within cells, protein analysis was 

performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). 

Tailing of “live” E. coli cells was higher than the cells that were rendered “dead” 

and therefore biologically inactive, which was opposite than expected.  This difference 

was attributed to cell surface characteristics and to the low carbon content within the 

columns.  In addition, protein analysis indicated that there was a difference between the 

protein profiles of “live” and “dead” cells.  As expected, bacterial BTC peaks for coated 

sand experiments were significantly lower than peaks for experiments using uncoated 

sands, indicating that attachment was more prevalent in coated sands.  Tailing was 

observed for experiments using Fe-coated sands, however, which is contradictory to the 

reporting of others.  Bacteria have been found to irreversibly attach to Fe-coated sands 

due to the positive charge of the coating and negative charge of bacteria. This irreversible 

attraction is thought to permanently remove bacteria from the aqueous phase, yet this 

research indicates that E. coli cells can reversibly attach to coated sand.  In addition, 

detachment rates did not significantly change for the different treatments under the steady 

state conditions, indicating detachment may be more of a concern in perturbed systems.  

More research is necessary to elucidate the factors controlling detachment for the future 

protection of groundwater supplies from contamination by pathogenic microorganisms. 
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I.  INTRODUCTION 

 

Bacterial contamination of groundwater is a national health concern in the United 

States.  The movement of bacteria through groundwater has therefore been a focus of 

research.  Although water quality is improving and water supplies in the US are among 

the safest in the world, more information on detection and elimination is still needed (US 

EPA 1999a).   

In addition to concerns about bacterial contamination, recent research has focused 

on the use of bacteria for in situ groundwater bioremediation (Harvey 1991; Scheibe and 

Wood 2003).  In situ bioremediation involves the injection of contaminant-degrading 

bacteria to the subsurface, and successful remediation depends on bacterial transport to 

an area of contamination.  Understanding the processes controlling bacterial movement 

through the subsurface, including the mechanisms controlling both attachment to and 

detachment from sediment surfaces, will assist in the prevention of pathogen transport 

and the remediation of aquifers (Bengtsson and Ekere 2001; Scheibe and Wood 2003).   

The effects of biological and physicochemical factors on cell attachment have 

been well investigated in field and laboratory experiments and by numerical modeling.  

The factors influencing detachment, however, have not been thoroughly investigated. The 

goal of this study was to determine if bacteria have any biological effect on 

attachment/detachment and to elucidate the biological and physicochemical 

characteristics that could affect detachment for the development of future models. 
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Bacterial Contamination of Groundwater 

Drinking water contamination by pathogenic (disease causing) microorganisms 

was recognized by scientists beginning in the early 20th century (USEPA 1999a).  

Contamination of drinking water sources occurs when wells are poorly constructed or 

when contamination sources are too close to wells.  Public disease outbreaks occur when 

these waters are not treated properly prior to use.  Approximately 80% of the 54,000 

community water systems, defined as drinking water systems that serve a resident 

population year-round, use groundwater as the main source of drinking water in the 

United States (USEPA 1999a).  Furthermore, 53% of the United States population relies 

to varying degrees on groundwater supplies (USEPA 1994).  In New Hampshire alone, 

over 500,000 people are served by more than 2,000 groundwater systems (USEPA 2000).   

Fecal contamination has been detected in almost half of all drinking water wells 

in the United States (Macler and Merkle 2002).  Fecal contamination includes both 

pathogenic and non-pathogenic microorganisms including bacteria, viruses and protozoa 

(Mawdsley et al. 1995).  Microorganisms naturally inhabit the intestines of warm-

blooded mammals and are consequently found in animal excreta (Craun et al. 1997; 

USDA and SCS 1992).  Surface infiltration and runoff are two ways in which these 

microorganisms can enter groundwater.  If pathogenic, microorganisms have the potential 

to cause disease outbreaks when the contaminated groundwater is improperly treated and 

used for drinking water.  Contaminated groundwater can also be transferred to surface 

waters in areas of groundwater discharge (USEPA 1993).  Surface waters carrying 

pathogens can cause recreational beach closures and shellfishery restrictions (USEPA 

1994).   
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Outbreaks caused by the ingestion of pathogens in drinking water have been 

recorded throughout North America.  The largest outbreak caused by waterborne 

pathogens reported to date in the United States occurred when over 400,000 people were 

infected by Cryptosporidium in Milwaukee, Wisconsin (Craun et al. 1997).  Many 

outbreaks in North America have been traced to wells carrying the pathogen E. coli 

O157:H7.  E. coli, members of the coliform family, are Gram-negative bacteria found in 

the digestive system of warm-blooded mammals and are commonly used as indicators of 

fecal contamination.  Although many are nonpathogenic, strains of E. coli are pathogenic, 

including E. coli O157:H7.  E. coli O157:H7 is a member of a pathogenic group of E. 

coli serotypes, enterohemorrhagic E. coli (EHEC).  EHEC can cause hemorrhagic colitis, 

which is characterized by abdominal complications (Griffin and Tauxe 1991).  Such 

conditions can worsen and cause kidney failure, known as hemolytic uremic syndrome 

(HUS), which can lead to death in children, the elderly and other immunocompromised 

individuals (Griffin and Tauxe 1991).   

The following cases are some examples of recent outbreaks that were caused by 

the ingestion of groundwater contaminated with E. coli O157:H7 in North America.  In 

August 1999, approximately 1,000 people attending the Washington County Fair in 

Albany, New York were infected from ingesting well water carrying E. coli O157:H7 

(CDC 1999).  This ingestion resulted in two deaths.  The source of contamination was 

traced to water from a shallow groundwater well that was not treated prior to use at the 

fair.  The cause of the well contamination was suspected to be from infiltration of cow 

manure (Gagliardi and Karns 2002; Olsen et al. 2002).    
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In a similar case in Canada, more than 3,000 people were infected and five died 

from the ingestion of groundwater drawn from the town supply and contaminated with E. 

coli O157:H7 in Walkerton, Ontario in May 2000.  The source was not positively 

identified but may have been the result of runoff contaminated with manure (Gagliardi 

and Karns 2002).  Olsen et al. (2002) reported the results of an investigation of a 1998 

outbreak of E. coli O157:H7 in Alpine, Wyoming.  An unconfined aquifer that served as 

the unchlorinated municipal groundwater supply in Alpine caused an outbreak of E. coli 

O157:H7 in 1998.  Elk and deer feces were found to be the cause (Olsen et al. 2002).   

The actual extent of pathogen outbreaks is underestimated due to underreporting 

(Olsen et al. 2002).  Often only novel cases are reported, making it difficult to track 

occurrences for the prevention of future incidences (O’Brien and Adak 2002).  The best 

way to prevent outbreaks from occurring is to eliminate the possibility of pollutants 

entering a source of drinking water (USEPA 1999a).  Nationally, the Wellhead Protection 

Program, part of the Safe Drinking Water Act, requires the individual states to create 

pollution prevention plans for every public drinking water source (USEPA 1999a).  

Some of the most cited groundwater pollutant sources of fecal contamination are 

agricultural activities and septic systems (USEPA 1994).  Other sources include land 

application of sludge byproducts from wastewater treatment, sewer line breaks and 

sanitary landfill leachate.  The EPA/State Feedlot Workgroup states that agricultural 

groundwater contamination sources include leaky manure storage lagoons and excess 

manure application to cropland (USEPA 1993).  Utilizing manure for crop fertilization 

can cause contamination when manure is not treated for bacteria prior to spreading 

(Gagliardi and Karns 2002), when it is applied in excess (Bicudo and Goyal 2003), or 
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when manure is spread on porous soils (Unc and Goss 2003).  Other sources include the 

pasturing of livestock and wash water from animal housing (Mawdsley et al. 1995).   

States have taken individual measures to control and prevent surface and 

groundwater contamination from agricultural runoff, such as the Nonpoint Source 

Management Plan created by the New Hampshire Department of Environmental Services 

(NHDES 1999).  NHDES, in cooperation with the Natural Resources Conservation 

Service (NRCS), has been successful in installing Best Management Practices (BMPs) 

such as constructed wetlands and concrete structures for manure storage and containment.  

These BMPs have effectively reduced bacterial loading from farms around the state 

(Landry, 2003).  The USDA and SCS (1992) list several methods for reducing bacterial 

contamination, including reducing the number of animals from areas draining to a 

drinking water source, reducing manure application by dividing applications throughout 

the growing season, increasing the amount of vegetative cover and reducing the amount 

of irrigation to lessen the extent of manure leaching.    

Septic systems, the other commonly sited source of groundwater contamination, 

were first used in the United States in 1860 at the community scale.  Today, 

approximately 25% of United States households use septic systems to treat their sanitary 

waste (USEPA 2001).  This number is increasing in rural and suburban areas (Stevik et 

al. 2004).  Septic systems can be an effective way to fully treat the waste of a household 

if the system is properly installed and maintained (USEPA 1999b).  If soils become 

saturated, however, microorganisms can become mobilized.  Septic systems can fail (i.e. 

release incompletely treated wastewater into a groundwater system) when soils become 

clogged, are too permeable or are not permeable enough (Schueler 1999).  Septic systems 
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can contain pathogenic bacteria and viruses.  System failures can cause outbreaks of 

infectious disease such as gastrointestinal illness, hepatitis A, cholera and typhoid 

(USEPA 2001).  To prevent failures, systems should be pumped out every 2 to 5 years 

(USEPA 2001; USEPA 1999b), inspected biannually and replaced after the 

recommended 15 to 30 years.  This preventive maintenance is often done at the discretion 

of the homeowner (Schueler 1999).   

 

Bioremediation 

Another compelling reason for subsurface bacterial transport research is in situ 

bioremediation, defined as the addition of contaminant degrading non-pathogenic 

bacteria to the subsurface for pollutant elimination.  One method of bioremediation 

involves the injection of contaminant degrading bacteria into the subsurface (Crawford 

1991; McClaine and Ford 2002).  In order for this process to be effective, bacteria must 

travel to a source of contamination without attaching to surfaces.  At this point, bacteria 

can then remove contamination from the aqueous phase (Bolster et al. 2001; Gannon et 

al. 1991; Johnson and Logan 1996).  The success of this technique relies on a number of 

factors, including microorganism biology (Crawford 1991), groundwater chemistry 

(Johnson and Logan 1996) and characteristics of the porous media (Johnson and Logan 

1996; Vance 1995).  For example, bacterial transport is less hampered in course-grained 

versus fine-grained groundwater systems (Vance 1995).  

In addition, the use of contaminant degrading bio-curtains, regions of sediment-

associated bacteria, is a focus of current research (Bolster et al. 2001).  Their formation 

requires that injected bacteria attach to surfaces, multiply, produce extracellular 
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polysaccharides and eventually form a biofilm.  Biofilms, defined as a community of 

cells permanently attached to a surface and bound together in several layers, can 

effectively degrade contaminants.  The development of a biofilm requires cells to attach 

and remain attached.  Bacterial detachment from areas of contaminant remediation could 

potentially reintroduce pollutants into groundwater systems.   

Methods for effective in situ bioremediation are still under development 

(Crawford 1991).  Understanding the factors controlling attachment and detachment of 

bacteria from porous media are therefore necessary for predicting aquifer filtration 

efficiency and for successful bioremediation (Bengtsson and Ekere 2001).    

 

Bacterial Transport Through Saturated Porous Media 

Before the 1970s, it was assumed that groundwater was free of fecal-borne 

microorganisms due to the natural filtering affects of the soil (USEPA 1999a).  Although 

the movement of bacteria-laden water through soil and aquifer sediments often results in 

significant removal of bacteria from the aqueous phase, the efficiency of filtration 

depends on many factors, such as soil type and geology (USEPA 2001).  Fine-textured 

topsoil can almost completely filter bacteria from the water column, but more coarse or 

disturbed soils are not as efficient (USDA and SCS 1992).  More permeable soils may 

facilitate bacterial transport through soils to groundwater (Mawdsley et al. 1995) whereas 

saturated soils are less able to effectively filter bacteria (USDA and SCS 1992).   

One way to gain a better understanding of the potential for aquifer filtration and 

bioremediation is to investigate how bacteria are transported through the subsurface.  

Bacteria can move unimpeded through saturated porous media or can interact with the 
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substrate.  Planktonic, or free-floating cells, are transported by processes such as 

advection, dispersion and Brownian motion.  Advection is transport caused by the flow of 

water, while dispersion occurs when a zone of mixing spreads mass beyond the region of 

advection.  This process is termed mechanical dispersion (mixing caused by the spatial 

variability of a porous medium) or molecular diffusion (mixing caused by molecular 

motions).  Cells are also affected by Brownian motion, which is random but constant 

movement caused by the bombardment of surrounding molecules when cells are 

suspended in a fluid or gas.  This is important on a small scale when bacteria are close 

enough to surfaces to possibly become attached.    

As bacteria move through aquifer materials, cell-substrate interactions affect 

bacteria movement.  Research has investigated bacteria/surface associations since the 

1930s (Mills 2003).  Bacteria interact with aquifer substrates through two processes, 

mechanical and sorptive (Stevik et al. 2004; Vance 1995).  Mechanical processes include 

gravitational settling and straining.  Straining traps bacteria that are too large to move 

through pore spaces and consequently removes bacteria from the water column (Harvey 

1991).  Straining occurs if cell diameters are greater than 5% of the diameter of the 

porous media (Harvey 1991).  Sizes of most bacteria range from 0.2 (starved cells) to 5 

µm (Vance 1995).   

 

Bacterial Attachment 

If bacteria are much smaller than pore spaces, sorption is the dominant process 

affecting bacteria/surface interactions (Stevik et al. 2004).  Bacteria can attach to surfaces 

either reversibly or irreversibly.  Cells that are reversibly attached are held by temporary 
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cellular bonds which can be broken by changes in flow, solution chemistry, or cell 

motility (Marshall 1980).  Reversibly sorbed cells do not come in direct contact with 

surfaces and are held at separation distances from surfaces by repulsive forces in an area 

termed the “secondary minimum” (Marshall 1980) (Figure 1).  Bonds between cells and 

surfaces are much more difficult to break when cells are irreversibly attached (Mills 

2003).  Irreversible attachment occurs when repulsive forces are weak and cells can 

directly connect to surfaces in an area termed the “primary minimum” (van Loosdrecht et 

al. 1990).  Cells can also become irreversibly attached because of cell surface structures 

or because of the excretion of extracellular polysaccharides.  Irreversible attachment 

followed by attachment of cells to other cells is required for the formation of biofilms.  

Attachment of cells is also referred to as adhesion, deposition or retention.   

 

 

Figure 1.  Diagram of the bacterial transport process including diffusion, reversible and 
irreversible attachment and ultimately the formation of biofilms (from van Loosdrecht et 
al. 1990). 
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Bacteria can adhere to a variety of surfaces, including other cells, mucous, teeth, 

plant roots, pipelines, soil and gravel (Marshall 1991).  Benefits for cells to attach to 

surfaces may include the organic and inorganic nutrients found on surfaces, the ability to 

remain stationary until nutrient conditions become more favorable and for protection 

from predation.  Pathogens usually must adhere to host surfaces prior to dividing, after 

which time they can colonize a site in order to infect hosts (Doyle and Sonnenfeld 1989).   

The factors that affect bacterial attachment to aquifer substrates can be divided into 

biological and physicochemical processes (Murphy and Ginn 2000).   

 

 Effects of Biological Factors on Attachment 

Research has shown that biological factors have significant affects on cell 

transport (Becker et al. 2004) and can assist in irreversible attachment of cells to surfaces.  

Biological factors involved in cell transport include growth and survival (DeFlaun et al. 

1990), cell concentrations (Camesano and Logan 1998), cell size (Fontes et al. 1991), 

bacterial surface characteristics (McCaulou et al. 1994; Williams and Fletcher 1996) and 

motility (Camesano and Logan 1998).  

Growth can affect attachment rates.  DeFlaun et al. (1990) reported that higher 

percentages of bacteria attached during log-phase of growth versus stationary phase. 

Although growth rates in the subsurface are much lower than in surface sediments, 

growth within aquifers is a factor over long time periods (Harvey 1991).  Survival of 

bacteria in the subsurface is affected by the length of time cells remain attached to 

surfaces and also by predation, starvation, competition and environmental conditions 

including groundwater chemistry and temperature (Harvey 1991).   
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Lower cell concentrations, whether due to starvation or predation, may reduce the 

amount of bacteria transported through porous media (Gannon et al. 1991).  Johnson et 

al. (1996) found that as bacterial concentrations increased and cell coverage on substrates 

increased, attachment rates decreased because attached cells blocked the attachment of 

unattached cells.  The process of attached cells preventing the attachment of other cells, 

termed the blocking effect, was stronger at low ionic strengths.  Tan et al. (1994) 

observed greater bacterial breakthrough when cell concentrations were increased.  At 

concentrations 108 cells ml-1 or greater they observed that cell concentration no longer 

affected bacterial breakthrough and speculated that this was caused by a blocking effect.  

Small cells usually move through pore spaces more easily than large cells 

(Gannon et al. 1991) because of fewer interactions between small cells and substrates 

(Hendry et al. 1999).  Smaller particles move more easily through pore spaces because 

there are more potential flow paths for small cells (Sirivithayapakorn and Keller 2003).  

Gannon et al. (1991) found that higher percentages of smaller cells than larger cells were 

transported through soil columns.  In column experiments, Weiss et al. (1995) found that 

the average length of cells was greater in column influent than effluent.  Fontes et al. 

(1991) performed column experiments using two differently shaped bacteria strains (a 

coccus 0.75-µm diameter and rod that was 0.75- by 1.8-µm) and observed lower recovery 

of larger rod-shaped cells in column effluent.   

Although research has examined the involvement of cells in attachment, the role 

cell surface properties play in bacterial attachment is not completely understood 

(Williams and Fletcher 1996).  Cell surface characteristics previously investigated 

include hydrophobicity, cell surface charge, cell membrane proteins and the excretion of 
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extracellular polysaccharides.  Less than 0.1% of cell surfaces actually come into direct 

contact with a surface, therefore cell/surface interactions are fairly indirect (van 

Loosdrecht et al. 1990).  Surfaces of cells can also change with environmental conditions 

(van Loosdrecht et al. 1989). 

Hydrophobicity is defined as the distortion of polar water molecules around 

nonpolar molecules due to an inability to form hydrogen bonds.  A hydrophobic surface 

is repellant to water and a hydrophilic surface can bond with water molecules.  Surfaces 

of bacteria are generally hydrophilic with hydrophobic sites.  Hydrophobic groups on cell 

and substrate surfaces can decrease separation distances by removing water films 

between a cell and the surface (Marshall 1991).  Hydrophobicity varies for every 

bacterial strain.  Hydrophobic bacteria have higher surface potentials than hydrophilic 

bacteria and attach to a greater extent than hydrophilic cells (van Loosdrecht et al. 

1987a).  Bacteria also become more hydrophobic during exponential growth phase (van 

Loosdrecht et al. 1987b).   

Rijnaarts et al. (1999) found that bacteria surface polymers containing 

hydrophobic groups adsorbed to hydrophobic Teflon.  In column experiments, McCaulou 

et al. (1994) observed slower attachment rates of hydrophilic bacteria than hydrophobic 

bacteria.  They speculated that this was the result of the hydrophilic bacteria traveling 

farther prior to attaching.  Once attached, however, they observed that the bonds of 

hydrophilic cells were irreversible.  They also found that hydrophobic bacteria were more 

attracted to hydrophobic surfaces (sand coated with polymer to simulate organic carbon) 

than hydrophilic surfaces (quartz sand).  Hydrophilic bacteria were also attracted to the 

hydrophobic surfaces but to a lesser extent than hydrophobic bacteria, and attachment 
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rates of hydrophilic cells to hydrophilic surfaces were slightly higher than to hydrophobic 

surfaces.   

Additionally, electrokinetic potential affects attachment and plays a bigger role as 

hydrophobicity decreases (van Loosdrecht et al. 1987b).  In order to determine 

information about bacterial electrostatic attraction and repulsion, the electrokinetic 

potential (or zeta potential) of a cell is usually calculated from electrophoretic mobility 

and conductance (van Loosdrecht et al. 1987b).  Van Loosdrecht et al. (1987b) reported 

that hydrophobic cells have high electrokinetic potentials, yet they speculate that charged 

groups cover less than 8% of cell surfaces.  McCaulou et al. (1994) reported that higher 

electrophoretic mobility of bacteria (higher negative charge) can increase affinity for 

positively charged surfaces in column experiments.  Gannon et al. (1991), however, 

found that bacteria surface charge was not related to transport.   

The involvement of cell proteins in attachment has also been investigated.  The 

cell envelope is comprised of proteins that may be involved in attachment and 

detachment of Gram-negative bacteria.  Gram-negative bacteria are distinguished from 

Gram-positive bacteria because of their inability to retain the Gram stain, which indicates 

whether a lipopolysaccharide outer membrane is present (Gram-negative) or not (Gram-

positive).  The cell envelope is comprised of an inner and outer membrane and of 

peptidoglycan, which provides cell wall structure (Özkanca and Flint 2002).  The 

permeable outer membrane covers the peptidoglycan layer and is made up of proteins 

(including lipoproteins), phospholipids and lipopolysaccharide.  These surface 

components contribute to cell surface hydrophobicity (Hancock 1991) and are involved 

in attachment.  Lipopolysaccharides, which are nonpolar, may dominate in binding to 
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hydrophobic surfaces, whereas polysaccharides, capable of polar or electrostatic 

interactions, may be involved in attachment of cells to hydrophilic surfaces (Williams 

and Fletcher 1996).  Bidle et al. (1993) investigated the role of S-layer proteins (proteins 

that form lattices on the outside of cells and can contribute to cell hydrophobicity) in 

attachment and found that S-layers are involved in attachment but that the degree of S-

layer attachment varies with environmental conditions.  Fimbriae, proteinaceous rod-

shaped cell surface structures 0.2 to 2 um long, are thought to be hydrophobic (Ward 

1980) and also play roles in attachment (Doyle and Sonnenfeld 1989).  One method 

commonly used to examine cell protein profiles is sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE), which involves separating proteins by 

isoelectric charge or molecular weight.   

Extracellular polysaccharides, excreted by bacteria during the breakdown of 

organic material, are also involved in attachment (Doyle and Sonnenfeld 1989).  These 

excretions form a “cement” that holds cells to surfaces.  Cells attached by extracellular 

polysaccharides can become irreversibly attached and therefore have the potential to form 

biofilms.   

Cell motility can also be involved in cell attachment.  Motility is the means for 

some species of bacteria to move, in a process termed taxis.  For example, movement 

may occur towards or away from areas which are either rich or deficient in nutrients, light 

or oxygen (chemotaxis, phototaxis, or aerotaxis, respectively).  Motility may increase the 

chances of a cell arriving at a substrate, overcoming electrostatic repulsive barriers, and 

attaching to surfaces (Stevik et al. 2004; van Loosdrecht et al. 1989).   
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One mode of motility is the flagella, which can be up to 20-µm long.  In some 

cases, flagella have been found to be involved in actual cell attachment to substrates 

(McClaine and Ford 2002) and to and from other cells.  Flagella also facilitate bacterial 

adhesiveness as they protrude through the hydrophilic outer membranes of cells exposing 

hydrophobic sites on bacteria (Hancock 1991).  Fibrils are other structures on cell 

surfaces involved in motility that could act as bridging structures binding cells 

irreversibly to substrates.   

Camesano and Logan (1998) observed an increase in attachment of nonmotile 

bacteria but found a decrease in cell retention of motile bacteria when fluid velocities 

were decreased.  They also reported that decreasing ionic strength by two orders of 

magnitude decreased retention of motile bacteria strains more than nonmotile strains.  

Van Schie and Fletcher (1999) reported that flagellated cells attached to surfaces while 

still motile at log phase.  At stationary phase, however, cells became nonmotile and 

attachment to surfaces was no longer observed.  They also stated that the relationship 

between motility and attachment remained unclear. 

 

Effects of Physicochemical Factors on Attachment 

As cells move close to substrate surfaces they are subject to attractive London-van 

der Waals and repulsive electrostatic forces.  The combination of these two forces form 

the weak attraction described previously as reversible attachment (Stevik et al. 2004). 

Van der Waals forces are the only adsorptive forces effective at cell-substrate separation 

distances greater than 50-nm (Marshall 1991) and occur when electron clouds form 
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temporary dipoles.  The fluctuating dipoles induce dipoles in surrounding molecules by 

distorting adjacent electron clouds, resulting in temporary attractions. 

As bacteria approach substrate surfaces, electrostatic forces increase.  Gram-

negative bacteria are generally negatively charged with some positively charged sites 

(Doyle and Sonnenfeld 1989) in natural groundwater conditions.  The negative charge is 

due to phosphate, carboxylate and sulfate groups found in cell walls (Hancock 1991).  

The pHiep, which is the isoelectric point at which charges are balanced, ranges from 

approximately 2 to 3.65 in Gram-negative bacteria (Mills 2003).  At higher solution pH, 

Gram-negative bacteria are therefore negatively charged.   

The negative layer of charge around bacteria and solids is surrounded by a layer 

of counterions that thins further from surfaces, creating a double layer of charge.  The 

thickness of this double layer is determined by ionic strength, decreasing with increasing 

ionic strength (Mills 2003).  This phenomena is described by the commonly used DLVO 

theory, named for Derjaguin and Landau (1941) and Verwey and Overbeek (1948), 

which calculates total interaction potential (Gtotal) as the sum of attractive van der Waals 

(GA) and repulsive electrostatic (GE) forces, Gtotal= GA+GE (Figure 2) (Harvey 1991; 

Mills 2003; van Loosdrecht et al. 1990).  DLVO theory predicts that in groundwater at 

high ionic strength, the double layer is compressed and van der Waals forces dominate.  

Electrostatic repulsion is the dominant force in groundwater at low ionic strength 

(Rijnaarts et al. 1999). 
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Figure 2.  Total Gibbs energy interaction potential (Gtot), van der Waals forces (GA) + 
electrostatic forces (GE) versus distance of particle H from a like-charged flat surface at 
(a) low ionic strength, (b) intermediate ionic strength and (c) high ionic strength (from 
van Loosdrecht et al. 1990).  The particle is repelled at low ionic strength as a result of 
electrostatic forces, lies reversibly attached within the secondary minimum at 
intermediate ionic strength, and rests in an irreversibly attached state within the primary 
minimum at high ionic strength.  
 
 

Van der Waals and electrostatic forces both interact at separation distances of 

about 10 to 20-nm until cells reach within 1 to 1.5-nm of a surface (Marshall 1991) in 

groundwater of intermediate ionic strength (<0.01 M).  This area, called the secondary 

energy minimum, is where cells do not directly contact surfaces but can remain in a state 

of reversible attachment (van Loosdrecht et al. 1990).  Energy is required to overcome 

the 1.5-nm barrier.  At ranges below 1.5-nm (the deep primary minimum), van der Waals 

forces attract bacteria because of a lack of repulsive kinetic energy (Mills 2003).  

Bacteria can then become irreversibly attached barring changes in solution chemistry 

(Harvey 1991).  There is skepticism, however, that DLVO theory is applicable to 

microorganisms because exact separation distances are unknown because of the presence 

of cell wall structures such as fimbriae and because of variable cell surface chemistry 

(Meinders et al. 1995). 
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Fontes et al. (1991) and Mills et al. (1994) found that decreasing ionic strength by 

an order of magnitude decreased bacterial attachment rates to quartz sands.  Deshpande 

and Shonnard (1999) also observed that increasing ionic strength increased attachment 

rates of bacteria to silica sand.  Similarly, Bolster et al. (2001) reported that decreasing 

ionic strength decreased attachment rates of bacteria to uncoated quartz sand.  In contrast, 

DeFlaun et al. (1990) reported that increases in ionic strength did not increase attachment 

of bacteria to sand.  At the field scale, Mailloux et al. (2003) found that high ionic 

strength did not induce higher attachment rates for hydrophilic Comamonas sp. strain 

DA001.   

Attachment rates have been shown to increase if positively charged sediments are 

present.  A common aquifer substrate, quartz (SiO2), is negatively charged at 

circumneutral pH, and therefore repels negatively charged bacteria (Mills 2003).  Aquifer 

sands, however, are often coated with an iron oxyhydroxide coating, which has a pHiep 

greater than 8 (Johnson and Logan 1996) thus carrying a positive charge at neutral and 

acidic pH values.  An electrostatic attraction between iron coated sands and negatively 

charged bacteria therefore becomes possible.  Bolster et al. (2001) and Johnson and 

Logan (1996) both reported that in miniature sand columns, the presence of coated sands 

increased attachment rates.  In sorption isotherm experiments, Mills et al. (1994) reported 

almost complete removal of bacteria from the aqueous phase at bacterial concentrations 

up to 108 cells ml-1 in coated quartz sands and only 28 to 75% of the bacteria were 

adsorbed when uncoated sands were used.  McCaulou et al. (1994) found that more 

bacteria remained attached to quartz sand coated with positively charged hematite than to 

other surfaces.  Bolster et al. (2001) also examined the combination of ionic strength and 
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grain coatings and reported that a decrease in ionic strength by an order of magnitude 

decreased sticking efficiency in uncoated but not coated sands. 

Other physicochemical factors known to affect bacterial attachment include fluid 

velocity (Becker et al. 2004; Camesano and Logan 1998), grain size (Bolster et al. 2001; 

Fontes et al. 1991) and media heterogeneity (Fontes et al. 1991).  As flow velocity is 

increased, bacterial breakthrough may increase (Wollum and Cassel 1978) because 

opportunities for bacterial attachment decrease.  McClaine and Ford (2002) also found 

that attachment rates decreased as flow increased.  Hendry et al. (1999) observed higher 

percent recovery of bacteria in column experiments as linear groundwater velocity 

increased. 

Fontes et al. (1991) found that bacterial attachment was greater for smaller grain 

sizes (~330 µm) than for coarse grained sand (~1000 µm) and that grain size was the 

most important factor in controlling transport.  Bolster et al. (2001) reported that grain 

size did not have a significant effect on bacterial retention capacity of sand in column 

experiments.   

Heterogeneity of porous media, including differences in media sizes or surface 

coatings, can affect transport.  Johnson et al. (1996) and Loveland et al. (2003) observed 

a direct relationship between colloidal attachment rates and the fraction of quartz sand 

coated with iron oxyhydroxide to uncoated sand, with attachment rates increasing as the 

percentage of fully or partially coated sands increased.  Bolster et al.  (1999) observed 

significant spatial variability in attached bacteria after dissecting laboratory columns.  

They speculated this was a result of media heterogeneity.  In addition, they hypothesized 

that the variability was a result of different attachment capabilities within influent 
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bacteria populations.  At the field scale, Mailloux et al. (2003) found that aquifer 

heterogeneity had much less effect than microbial population heterogeneity in an aquifer 

in Oyster, Virginia. 

 

Bacterial Detachment 

Once bacteria have become attached to sediment surfaces, they can become 

detached from the solid phase and re-enter the aqueous phase by a process called 

detachment, also referred to as entrainment or desorption.  This transfer of bacteria from 

the solid phase to the aqueous phase can result in the long-term release of bacteria back 

into drinking water supplies, posing a potential human health risk if the bacteria are 

pathogenic (Zhang et al. 2001).  Trace amounts of bacteria can be eluted for long periods 

of time following a source pulse (Bales et al. 1991) and may have adverse effects if 

conditions in distant locations foster growth (Hornberger et al. 1992).  McCaulou (1994) 

observed that time scales for detachment were 0.5 to 75 d versus 0.2 to 2 h attachment 

time scales, indicating that if attachment rates remained the same, bacteria with higher 

detachment rates would move greater distances at higher concentrations.  Quantifying 

detachment in various subsurface conditions is therefore necessary to determine the 

potential for bacterial transport.  

This detachment process over time, referred to as tailing, has been observed as 

extended tailing in breakthrough curves (BTCs, Figure 3) in both laboratory and field 

experiments (Zhang et al. 2001) including studies by Camesano and Logan (1998), 

Fontes et al. (1991), McCaulou et al. (1994), Johnson et al. (1995), Wollum and Cassel 

(1978) and Zhang et al. (2001).  Aqueous concentrations in BTC tails are often orders of 
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magnitude below peak concentrations, yet are still measurable.  Wollum and Cassel 

(1978) observed BTC tailing of streptomycete conidia in sand column experiments and 

reported very low concentrations in column effluent after 36 pore volumes of sterile 

water had been flushed through.  Zhang et al. (2001) reported low concentrations of 

bacterial tailing that lasted for months in their field experiment.  Fontes et al. (1991) 

attributed the bacterial tailing observed in their column experiments to the flushing of 

previously attached cells.  Figure 3 illustrates the typical sections of BTCs.   

 

A B C D E 
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Figure 3. A typical breakthrough curve with five distinctive regions dictating the stages 
of a pulse of bacteria transported through porous media (from Johnson et al. 1995).  
Section A shows the delay before any concentrations are detected in the effluent, B 
displays the breakthrough, C represents steady state conditions, D is the effluent portion 
of the curve demonstrating the effect of dispersion and a high rate of reversible 
attachment, and E represents detachment over time. Breakthrough must be plotted on a 
semi-log scale in order to observe tailing. 
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Detachment has been observed in breakthrough curves for decades, yet the factors 

controlling detachment from sediment surfaces at steady state have not been as well 

investigated as the factors determining attachment (Bergendahl and Grasso, 2003).  

Recent studies have recognized the importance of detachment and have begun to examine 

the biological and physical factors controlling bacterial detachment in addition to 

attachment.   

 

Effects of Biological Factors on Detachment

Cell size and surface characteristics can affect bacterial detachment.  Meinders et 

al. (1995) observed the transport of three bacteria types and reported that the smallest 

cells had the lowest detachment rates.  They speculated that this could have been related 

to collisions between attached and planktonic cells.   

Becker et al. (2004) compared Gram-positive, Gram-negative, motile and 

nonmotile bacteria transport through uncoated and iron-oxyhydroxide coated latex beads 

in column experiments and observed greater breakthrough tailing in Gram-positive 

bacteria than Gram-negative in the presence of coated sands.  They suggested that the 

coating may have an effect on cell wall/substrate interactions, which may be related to 

the lipopolysaccaride outer membrane which is only present in Gram-negative bacteria.  

Williams and Fletcher (1996) previously found that lipopolysaccharide was involved in 

bacterial transport.   

Motility has varied affects on bacterial detachment.  McCaulou et al. (1995) found 

that motile bacteria detached three times as fast as nonmotile cells in laboratory column 

experiments.  Conversely, Becker et al. (2004) reported that at low flow rates, motile 

 22



bacteria had lower detachment rates than nonmotile bacteria.  They also suggested that 

flagella aid in detachment.  McClaine and Ford (2002) observed that fewer motile 

bacteria remained attached at low flows than high flows in experiments examining the 

attachment of E. coli cells to glass.  They speculated that flagella aided in detachment at 

low flow rates but not at high flows.   

 

Effects of Physicochemical Factors on Detachment 

Effects of chemical perturbations on colloid and bacteriophage (viruses that attack 

bacteria) detachment, such as decreases in ionic strength and increases in pH, have been 

reported in the literature (Bergendahl and Grasso 2003).  Grolimund and Borkovec 

(1999) observed that a decrease in ionic strength increased colloid detachment.  They 

suggested that as ionic strength increases, the activation energy for particle release 

required to overcome energy barriers increases.  The effects of ionic strength on bacterial 

detachment under steady state conditions are not well understood.   

Bales et al. (1991) and Kinoshita et al. (1993) reported that increasing pH during 

laboratory column experiments increased bacteriophage detachment rates.  Kinoshita et 

al. (1993) found that detachment rates were slow at steady state conditions but speculated 

that drastic increases in pH would increase virus detachment.   

The effects of grain coatings on bacterial detachment are also not well known.  

Scholl et al. (1990) found that bacterial detachment from Fe-hydroxide coated sand did 

not occur in column experiments.  When solution chemistry was changed to pH 8, 

however, detachment from Fe-coated sands did occur in field and laboratory experiments 
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(Scholl and Harvey 1992).  In column experiments, Becker et al. (2004) also observed 

bacterial tailing in the presence of iron-oxyhydroxide coatings. 

Brownian motion can cause bacterial detachment (Meinders et al. 1995) as can 

flow perturbations.  Detachment can occur when flow velocities exceed the strength of 

interaction between cells and surfaces and when the velocity is high enough to exert shear 

(McClaine and Ford 2002).  Zhang et al. (2001) reported that detachment rates of the 

bacterial strain Comamonas DA001 decreased by an order of magnitude as velocity 

decreased at the field scale.  Becker et al. (2004) concluded that detachment was more 

sensitive to flow rates than sorption rates were.  In laboratory column experiments, 

however, Tan et al. (1994) examined bacteria transport at three flow velocities and found 

that detachment did not correlate with flow velocity. 

 

Mathematical Modeling 

Attachment and detachment rates are important controls on bacterial transport 

(Harvey 1991) and numerical modeling is used to determine these rates (Deshpande and 

Shonnard 1999).  Bacteria are the size of colloids.  Colloid-filtration theory (Rajagopalan 

and Tien 1976; Yao et al. 1971), therefore, is typically incorporated into a one-

dimensional advection-dispersion equation in order to model bacterial transport (Harvey 

1991; Johnson et al. 1995).  Colloid-filtration theory is used to describe colloid removal 

during filtration.  It is based on bacterial transport processes that transport cells to 

surfaces including Brownian motion, gravitational settling (Harvey 1991) and collector 

efficiency, defined as the ratio of the rate of particles that strike a collector to the rate of 

those that flow towards it.   
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Flow-through columns have often been used in laboratory experiments to 

investigate bacterial transport and are modeled by fitting multiple parameter models to 

BTCs (Becker et al. 2004).  The parameters are derived by fitting a modified one-

dimensional advection-dispersion equation that accounts for forward (attachment) and 

reverse (detachment) rates (similar to kinetic sorption) to the BTCs.  No model to date, 

however, has been successful in accurately predicting the entire shape of BTCs (Johnson 

et al. 1995).   

Numerous modeling techniques have been developed to describe the attachment 

process.  Johnson et al. (1996) used a second-order model modified to account for the 

effect of previously attached bacteria on attachment rates.  Deshpande and Shonnard 

(1999) called this a “blocking” model since the sorbed bacteria prevent further 

attachment.  Bolster et al. (1999) used a similar approach and also accounted for an 

influent concentration of bacteria composed of two populations with different sticking 

efficiencies.  Deshpande and Shonnard (1999) included intermediate-order kinetics into 

first- and second-order models to account for filter ripening, which is when attachment 

rates increase over time due to cell-to-cell attachment.  They found that this model 

provided a better fit to observed data and was more flexible than first- and second- order 

models, although at low ionic strength first- and second- order models provided better 

agreement with data.     

Models that account for detachment have progressed from first-order filtration to 

residence time-dependent models (Becker et al. 2004).  Hornberger et al. (1992) treated 

detachment as a first-order kinetic process but found this model overpredicted tailing and 

emphasized BTC peaks at the expense of the tails.  The model did, however, provide a 
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better fit than models neglecting detachment.  In addition to modeling bacterial transport 

as a kinetic process, Becker et al. (2004) and Johnson et al. (1995) used residence time-

dependent models that described detachment as a function of residence time and 

accounted for both the peak and tail of BTCs equally.  Johnson et al. (1995) found that by 

accounting for quick detachment followed by slow detachment in a two-rate model, they 

were able to simulate either breakthrough or elution portions of observed BTCs but not 

both simultaneously.  They found that by utilizing a two-site model that included 

irreversible attachment in addition to accounting for residence times, they were able to 

model both breakthrough and elution simultaneously.  Harvey and Garabedian (1991) and 

McCaulou et al. (1994) also utilized two-site models assuming two potential attachment 

sites.  Despite these differences from the model used by Hornberger et al. (1992), 

modeling bacterial transport as a first-order process is still one of the most common 

approaches to describing bacteria detachment in aquifers.   

 

Objectives 

As cells move through the subsurface, the likelihood of cell attachment to or 

detachment from surfaces depends on many factors, including the biology of the cells, 

solution chemistry, and subsurface types.  It is necessary to understand the processes that 

control bacterial movement through aquifers in order to develop models that accurately 

describe and predict the attachment and detachment of bacteria from aquifer sediments 

(Harvey 1991).  Studies that have investigated the relationship between factors affecting 

attachment and detachment are not always in agreement, possibly because of the many 

variables involved, including the wide variety of bacterial strains that have been 
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investigated.  In addition, the factors controlling detachment have not been as well 

investigated as the factors controlling attachment.  The goal of this current study, 

therefore, was to elucidate some of the biological and physicochemical factors affecting 

the detachment of bacteria by examining the movement of E. coli, a commonly used 

indicator of fecal contamination, through saturated porous media in laboratory columns 

and by determining the protein profiles of these cells.  The objectives of this study were 

(1) to determine to what extent, if any, E. coli cells are actively involved in the 

detachment process, and (2) to determine the extent of bacterial detachment in the 

presence or absence of surface coatings at varied ionic strengths. 

 

Hypotheses 

To address these objectives, the following hypotheses were tested:  

H1:  “Live” bacterial cells will have lower detachment rates because “live” cells will be 

actively involved in the attachment/detachment process.  

H2:  Iron coatings will generate lower detachment rates than uncoated sand due to the 

attraction of negatively charged bacteria to positively charged iron coated sand grains. 

H3:  Higher ionic strength will reduce detachment rates because of stronger attractive van 

der Waals forces. 
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II. MATERIALS AND METHODS 

 

Laboratory column experiments were performed to investigate the detachment of 

a nonmotile strain of E. coli at resting state through saturated uncoated and Fe-coated 

uniform-sized quartz sand at two ionic strengths (0.001 M and 0.01 M).  For each 

experimental run, a 0.5 pore volume (PV) pulse of 3[H]-labeled E. coli cells were injected 

into flow-through columns, and column effluent was sampled for ~17-23 PVs (8.5-11.5 

h).  To assess the importance of biological activity on the attachment/detachment process, 

comparisons were made between E. coli cells harvested and washed at stationary phase 

(“live” cells) with E. coli cells fixed with 0.5% final concentration formaldehyde (“dead” 

cells).  To calculate bacterial detachment rates, a one-dimensional advection-dispersion 

equation (ADE) modified to account for both reversible and irreversible attachment was 

fit to the observed bacterial breakthrough curves (BTCs).  To determine if there were 

differences in “live” and “dead” cell proteins, the protein profiles of “live” cells were 

compared to “dead” cells using sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). 

 

Porous Media Preparation 

Porous media was prepared in advance to ensure that sand grain sizes were 

uniform, grain surfaces were free of organic matter and that Fe-coated sands were 

thoroughly covered.  Portions of commercially available quartz sand obtained from 

UniminTM in New Caanan, CT were consecutively sifted through 500 µm and 350 µm 
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U.S.A. Standard Testing Sieves.  The fraction between 350 and 500 µm was collected 

and utilized for the experiments. 

In order to remove organic matter that could be utilized as a carbon source for the 

bacteria, the sand was acid washed and then rinsed thoroughly.  First, sand was washed 

thoroughly with deionized water (DIW).  It was then boiled in a 2 L flask containing 1 M 

hydrochloric acid for 2 h and finally rinsed with DIW until the rinse water pH was equal 

to the DIW pH.  The sand was then dried in a THELCO® Lab Oven (Precision Scientific, 

Winchester, VA) overnight at 105°C, re-rinsed the following day, and finally dried again 

overnight.  

Portions of the acid washed sand were coated with Fe-oxyhydroxide in a method 

similar to that employed by Mills et al. (1994).  To coat grains, 40 g FeCl3·6H2O were 

dissolved in 400 ml DIW.  The solution pH was adjusted to >9 by slowly adding 

approximately 110 ml of 4 M NaOH.  Two hundred grams of sand was added to the 

solution when the pH was >9 and placed on a Lab Rotator benchtop shaker table for 36-

48 h.  According to Mills et al. (1994), the overnight shaking uniformly coats the sand 

grains.  One molar NaOH was added to the solution when the pH dropped below 9.  The 

sand was then rinsed in DIW until the water was clear and baked again at 105°C for a 24 

h period.  The final step of rinsing and drying was repeated.  Prior to experiments, sand 

was autoclaved at 121°C and 15 psi for 20 min to sterilize. 

 

Column Preparation 

For every experimental run, two 30- x 4.8-cm Chromaflex™ Chromatography 

Columns (Kontes Glass Co., Vineland, NJ) were acid washed, autoclaved for sterilization 
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and attached to Masterflex® Precision Tygon Food Tubing.  Bed supports within the end 

caps were removed and replaced with stainless steel wire mesh (Stainless Steel Type 304, 

#60; Small Parts, Inc., Miami Lakes, FL) (Harvey et al. 1995).  The mesh was then 

sterilized with 70% ethanol.  

KCl was dissolved in DIW to yield a low or high ionic strength buffer solution 

(0.001 M or 0.01 M respectively).  These two concentrations were chosen because they 

have been used in the experiments of others (Mills et al. 1994) and additionally were both 

“intermediate” ionic strengths, as described in Figure 2, where the effect of repulsive 

electrostatic forces or attractive van der Waals forces on particle separation distances 

from a surface is not dominant.  At higher ionic strengths, electrostatic forces are known 

to be weak, and at lower ionic strength, effects of ionic strength will be minimal and 

electrostatic repulsion dominates.  The pH was ~5.5 for each experiment.  The buffer 

solution was filter sterilized through 0.2-µm pore size, 47-mm diameter, membrane filters 

using a vacuum pump.  This solution was then added to the columns using a Masterflex® 

Laboratory/Standard tubing pump in reverse upward flow to prevent the entrapment of air 

bubbles within the wire mesh.  

Columns were wet packed with sand (uncoated or Fe-coated) by slowly pouring 

the sand into the buffer solution to a height of approximately 10 cm within the columns.  

Stirring and tapping the columns was necessary during the addition of sand in order to 

prevent stratification (Wollum and Cassel 1978) and air bubbles within pore spaces.  Pore 

volumes (PV), defined as the volume of water retained in the sand columns (Wollum and 

Cassel 1978), ranged from 64 to 70 ml.  PVs for each column were calculated as the 

volume of water pooled above the sand columns subtracted from the volume of water in 

 30



the column prior to the addition of sand.  After packing was completed, columns were 

operated in the downflow direction, and approximately 10 PVs of KCl buffer solution 

were passed through each column for pH equilibration.   

 

Bacteria Preparation 

 A nonmotile (paralyzed flagella) strain of E. coli, K-12 HCB136, was obtained 

from the laboratory of Howard C. Berg at Harvard University.  In nutrient deficient 

conditions, as aquifers typically are, starving cells have been found to lose motility (Wei 

and Bauer 1998).  Nonmotile cells with paralyzed flagella were therefore used in these 

experiments in order to investigate the transport of cells in an environment similar to 

natural groundwater conditions.  In addition, motility may affect attachment/detachment 

processes.  In order to eliminate the possible affects of motility on detachment in these 

experiments, therefore, nonmotile cells were used.   

Antibiotic selection was used for E. coli verification (Williams and Fletcher 

1996); the culture was first streaked on tryptic soy agar (TSA) (Difco™) with 20 µg ml-1 

streptomycin (HCB136 is resistant to streptomycin) and grown for 22 h at 35°C in an air 

incubator.  For storage and preservation, cultures were grown and then treated with 

Dimethyl Sulfoxide (DMSO).  First, single colonies were removed from the confirmed 

culture following incubation and were then used to inoculate autoclave sterilized 300g 

ml-1 tryptic soy broth (TSB) (Sigma®) in 25 ml DIW.  The culture was then grown 

aerobically with shaking at 120 rpm at 22°C.  One ml of this culture was used to 

inoculate a second flask of 50 ml autoclaved sterilized TSB solution which was then 

grown aerobically for 6 h at 22°C.  Following the final incubation, DMSO (Sigma®) was 
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added to the culture to yield a final concentration of 7% DMSO (Greaves and Davies 

1965).  One ml aliquots of the treated culture were then pipetted into Cryo-Stor vials, 

mixed using a Mini Vortexer, and cryogenically frozen (-80°C) until use.  

For each experiment, one frozen isolate was thawed and aseptically used to 

inoculate autoclave sterilized 300g ml-1 TSB in 50 ml DIW.  The culture was grown 

aerobically with shaking at 120 rpm for approximately 16 h at approximately 22°C.  

Following incubation, 0.5 ml from the culture was aseptically removed and inoculated 

into a second flask containing 50 ml sterilized TSB and DIW.  The new culture was 

grown aerobically with shaking at 120 rpm for 7.5 h at 25°C in a controlled temperature 

room.  Following the second incubation, cells were washed and harvested via 

centrifugation for the removal of growth media to ensure that growth was not a factor in 

the experiments.  The cells were centrifuged at 6,037 x g for 10 min at 18°C.  The 

supernatant was then decanted, the bacterial pellet resuspended in 35 ml of 0.0001 M 

KCl, and the solution centrifuged again as described above.  This was repeated a third 

time to assure that the growth media had been completely removed.  Following the third 

centrifugation, the bacterial pellet was suspended in 50 ml of low or high ionic strength 

KCl buffer solution, depending on experimental treatments.  Care was taken to incubate, 

inoculate and centrifuge the bacteria in the same manner for each experimental run in 

order to reduce experimental variability. 

For the enumeration of bacterial concentrations in the column effluent, the diluted 

culture was amended with 1 mCi [4,5-3H]-leucine (DeFlaun et al. 2001).  When cells are 

amended with leucine, an amino acid, the leucine will be incorporated into the cell 

proteins.  The amended culture was then incubated for approximately 18 h at 22°C to 
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allow for 3[H] incorporation into cell biomass.  Preliminary tests revealed this to be the 

most appropriate cell labeling method (see Appendix A).  After the incubation, on the day 

of the experiment, the solution was split into two flasks of 25 ml each.  Approximately 30 

min prior to the experiment, formaldehyde (0.5% final concentration; v:v) was added to 

one of the two cultures (Camesano and Logan 1998; Hanein et al. 1995) to render them 

“dead” and therefore eliminate biological activity for comparison with the biologically 

active “live” cells.   

Unincorporated radiolabel was removed from the bacterial solutions via 

backwashing filtration prior to the column experiments in a method similar to that 

described by Camesano and Logan (1998).  This method was chosen after preliminary 

testing (see Appendix A).  First, approximately 9 ml from each culture were filtered 

through 0.2-µm pore size, 47-mm diameter, membrane filters and rinsed with DIW.  The 

filters were then backwashed by flipping them over and filtering approximately 20 ml of 

low or high ionic strength KCl solution into a second filter flask.  The resulting bacterial 

cultures were then filtered through 5.0-µm syringe filters to prevent clumping (Bolster et 

al. 2001).    

To ensure that these bacterial cultures were the same concentrations for each 

experiment, the cultures were diluted until ~75% transmittance was reached.  

Transmittance was measured using a Spectronic® 20D+ spectrophotometer at a 

wavelength of 590 nm.  This transmittance was previously determined to yield ~1-2 x 107 

colonies ml-1 in preliminary experiments.  To verify that this transmittance represented 1-

2 x 107 colonies ml-1 for every experiment, the diluted bacterial influent cultures were 

also plated on TSA prior to each experiment and were enumerated the following day.  
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Experiments were run prior to obtaining plate counts, however, as it was assumed that the 

transmittance represented the cell concentrations.  Plate counts for each experiment did 

confirm that cell concentrations were within the range of ~1-2 x 107 colonies ml-1.  The 

final diluted cultures were used as the influent bacterial pulses for the column 

experiments.   

   

Column Experiments 

For each experimental run, a conservative tracer was first run through two 

adjacent columns, columns were then flushed to remove the tracer, the pulse of 1-2 x 107 

colonies ml-1 E. coli cell tracer was then injected into the columns and the bacterial 

concentrations in the effluent were measured over time.  The experimental design 

included three treatments with two levels for each treatment, including bacterial state 

(“live” or “dead” cells), grain coatings (uncoated or Fe-coated sand), and ionic strength 

of the KCl buffer solution (low at 0.001 M or high at 0.01 M) (Figure 4).  Each 

experiment was duplicated on different experimental days.  On each experiment day, 

“live” cells were injected into one column and “dead” into the second column, while the 

other experimental treatments remained the same for both columns.  “Live” and “dead” 

experiments were run on each individual experiment day instead of running duplicate 

experiments simultaneously because although cultures were prepared using the same 

procedure for each experiment, variations in growth conditions may affect results from 

day to day.  In order to best compare “live” cell experiments to experiments using “dead” 

cells, it was therefore important to make comparisons using the same prepared culture.  A 
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total of eight experiments were completed and duplicated.  Experiments were run at 

ambient room temperature (approximately 21-23°C).   

   

Experimental 
Treatments 

“Live”  “Dead”  
E. coli E. coli 

Coated Grains Uncoated Coated Grains Uncoated 
Grains Grains 

Low IS Low IS Low IS Low IS 

 
High IS High IS High IS High IS 

 

Figure 4. Flow diagram illustrating the three experimental treatments with two levels for 
each treatment.  On any given experiment day, both levels of the first treatment, bacterial 
state, would be used, including “live” cells which were injected into one column and 
“dead” cells that were fixed with 0.5% formaldehyde to render them “dead” and were 
injected into the adjacent column.  Both columns were packed with one of the two levels, 
either uncoated or Fe-coated, of the second treatment, grain coatings, and were filled with 
one of the two levels, either low ionic strength (IS) or high ionic strength (IS), of the third 
treatment, the ionic strength of the KCl buffer solution.  
 

Conservative Tracer 

It was necessary to run a conservative tracer, tritiated water (3H20), through the 

columns prior to each experiment in order to calculate the interstitial pore water velocity 

and the dispersion coefficient in the columns for incorporation into equations used to 

estimate attachment and detachment parameters, a method often used in bacterial 

modeling (Becker et al. 2004; Deflaun et al. 2001).  Velocity and dispersion changed 

each time columns were repacked, therefore it was necessary to run the tracer through 
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prior to each experiment.  First, a stock solution of conservative tracer was prepared by 

mixing 0.1 mCi of 5.0 mCi ml-1 tritiated water into 1L KCl buffer solution at low ionic 

strength.  One hundred ml of the stock solution was filter sterilized through 0.2-µm pore 

size, 47-mm diameter, membrane filters using a vacuum pump and divided into two 250 

ml flasks for each experiment.  Additional KCl was added to the flasks for high ionic 

strength experiments.   

In order to determine the initial concentrations (Co), 1 ml from each flask was 

pipetted in quadruplicate into miniature scintillation vials.  The vials were filled with 

Ready Safe™ Liquid Scintillation Cocktail (Beckman Coulter™), loaded into vial racks, 

and the beta activity was counted in disintegrations per minute (dpm) mode for 10 min in 

a calibrated LS 6500 Multi-Purpose Scintillation Counter (Beckman Coulter™). 

Prior to the introduction of the conservative tracer, columns were drained of the 

KCl buffer solution to the top of sand grains, and 0.5 PV (32-35 ml) of the conservative 

tracer was pipetted carefully into the top of the columns, followed by approximately 4 PV 

of radiolabel-free KCl buffer.  Average linear velocity in the columns ranged from 4.0 to 

4.5 m d-1 as calculated from porosity, which was measured during column packing (PV 

divided by volume of saturated sand) and ranged from 0.36 to 0.4, and flow rate which 

was set at 2 ml min-1.  One PV was equal to ~64-70 ml, therefore based on the flow rate, 

the time for one PV to pass through the columns was ~30-35 min.  Conservative tracer 

experiments ran for approximately 2.5 h.   

Effluent from each column was collected every 0.1 PV in sterilized 13 x 100 mm 

Pyrex® test tubes with a Spectra/Chrom® CF-1 Fraction Collector (Spectrum® 

Laboratories, Inc.).  To determine final concentrations (C), 1 ml of effluent was extracted 
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from each tube, pipetted into scintillation vials, filled with scintillation cocktail and 

counted in the scintillation counter in the same method used to enumerate initial 

concentrations.  The concentration of tritiated water residual in the influent pool of KCl 

buffer solution was sampled periodically during the experiment to account for mixing at 

the inlet.  Following the completion of the conservative tracer run, at least 15 PV of KCl 

buffer solution were flushed through to ensure that the column effluent was devoid of 

radiolabel. 

 

Bacterial Tracer 

A 0.5 PV (~32-35 ml) pulse of 3[H]-labeled E. coli cells was added to each 

column, one with “live” cells and the other with “dead”, followed by ~17-23 PV of 

radiolabel-free KCl buffer.  Similar to the procedure for the conservative tracer 

experiments, average linear velocity in the columns again ranged from 4.0 to 4.5 m d-1, 

porosity ranged from 0.36 to 0.4, and flow rate was again set at 2 ml min-1.  One PV was 

equal to ~64-70 ml, therefore based on the flow rate, the time for one PV to pass through 

the columns was ~30-35 min.  Experiments were run for a period of 17-23 PV (8.5-11.5 

h) in order to track bacterial tailing over time and were stopped when a decrease in 

effluent concentrations was no longer observed.  Experiments were not run longer than 

this time period to avoid the affect bacterial death and label loss may have had over 

longer periods of time.   

Initial bacterial concentrations (Co) of the cultures used as the influent pulses were 

measured in quadruplicate via the scintillation counter using the method described above.  

Effluent (C) was collected every 0.1 PV for the first 4 PV to capture initial breakthrough 
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and every 0.33 or 0.5 PV for the remainder of each experiment.  Effluent samples were 

counted in the scintillation counter following the procedures described above.  The 

frequency of enumeration eliminated the need to sample from effluent tubes in duplicate.  

The 3[H] concentration in the radiolabel-free KCl buffer influent was monitored 

periodically following the same procedure used to monitor the conservative tracer 

influent.  Experiments were performed in duplicate for each treatment combination.  

Columns were disassembled following every experiment and thoroughly cleaned.      

The half-life of tritium is 12.3 years, therefore radioactive decay was nonexistent.  

Incorporation of the label into cells could have changed over time, however.  To 

determine if cell label decreased over the course of the experiments, initial concentrations 

were enumerated by scintillation counting at the beginning and end of each experiment.  

To ensure that unincorporated label was not also measured, cultures were filtered in 

quadruplicate through 0.2-µm pore size, 25-mm diameter, membrane filters.  The filters 

were placed in scintillation vials and counted.  Effluent from one experiment of uncoated 

sand with low ionic strength KCl solution was also enumerated 4 d following the 

experiment to determine if label loss occurred over an extended period of time.   

In order to assure that there was no growth or death throughout the experiment, 

cell concentrations were enumerated over time by plating (Fontes et al. 2001).  “Live” 

bacteria were plated on TSA at the beginning and end of each experiment.  In addition, 

the effluent peaks and concentrations following the peaks for “live” bacteria were plated 

on TSA for enumeration for several of the experimental runs.  The plates were incubated 

at 37°C and enumerated within 18 to 24 h.  “Dead” cultures were also plated to ensure 

that no growth occurred.   
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To enumerate both “live” and “dead” bacteria since “dead” cells did not grow on 

growth media, initial bacterial pulses and portions of the peak and tail of the bacterial 

effluent from a coated sands experimental run were stained with LIVE/DEAD® 

BaclightTM stock solution (Molecular Probes), incubated for 15 min, filtered through 0.2-

µm Nucleopore Track-Etch Membrane filters (Whatman), placed on slides, covered with 

cover slips, and viewed at 1000x using a Zeiss Axiskop 2 plus fluorescent microscope.   

To verify that results from scintillation counting represented actual bacterial 

concentrations, and to determine if cells were intact or lysed (Zhang et al. 2001), the 

samples used for fluorescent microscopy were viewed and photographed at 1000x 

magnification using an Olympus BH2-RFCA phase microscope.  To determine if 

formaldehyde fixation had an effect on cells and to differentiate the affect of fixation 

from the affect of cell death, “live” cells were also boiled for 10 min to render them dead.  

Boiled cells were then cooled and viewed for comparison with cells rendered “dead” by 

formaldehyde fixation.  Approximately 3 µl of each sample were placed on slides, 

covered with cover slips and sealed with Vaspar.   

 

Data Analysis 

Conservative tracer and bacterial breakthrough curves (BTCs) were calculated as 

C/Co versus PV (PVs are dimensionless) and plotted on a semilogarithmic scale, as 

tailing has been overlooked in BTCs plotted on arithmetic axes (Johnson et al. 1995).  

Peak C/Co were averaged between experiment duplicates and compared between 

experiments.  The fraction recovered, defined as the portion of introduced cells recovered 

in the column effluent (Fontes et al. 1991), was calculated from the curves by dividing 
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total mass of bacteria in the effluent by influent mass.  A three factor analysis of variance 

(ANOVA) was performed (SAS Institute, 1999) on experiments including duplicates to 

determine the effects of the three treatments, bacterial state (“live” versus “dead”), grain 

coatings (uncoated versus coated sand), and ionic strength (low versus high), on the 

fraction recovered between the two levels within each treatment.  Results below the 0.05 

confidence level were considered significant and the mean for each experiment and 

duplicate was presented.  The fraction recovered within just the tail effluent was also 

calculated.  Tailing was considered to begin at 2.5 PV after the beginning of each 

experiment.  A second three factor ANOVA was performed on the experiments including 

duplicates to examine the effects of the treatments on fraction recovered in bacterial tails.   

 

Mathematical Modeling 

Few studies have been successful in accurately simulating all portions of bacterial 

BTCs, therefore this study compared two models and examined the goodness of fit of 

each to the observed data.  In addition, models can be used to estimate parameters for 

comparison between experiments.  To calculate bacterial attachment and detachment 

rates, interstitial pore water velocity and dispersion were first estimated by calibrating a 

one-dimensional advection-dispersion equation (ADE) to observed conservative tracer 

BTCs using the Crank-Nicolson finite-difference method in Matlab (Bolster 2000).  

These estimated values were then incorporated into an ADE modified to account for both 

reversible and irreversible attachment (Eqs. 1 and 2).  The ADE was fit to the observed 

bacterial BTCs using the Crank-Nicolson finite-difference method in Matlab (Bolster 

2000).  Parameter values were obtained by fitting non-dimensional versions of the model 

 40



to the concentrations of cells in the aqueous phase over time using the Levenburg-

Marquardt method in Matlab (Bolster 2000).  A weighted-sum-of-squares objective 

function, defined as the sum of the weighted squared residuals between modeled aqueous 

bacterial concentrations and actual measurements of effluent concentrations, was used in 

order to account for both the peak and tail of each BTC.  The models were coded by C.H. 

Bolster.  

The modified ADE has the following form (Harvey and Garabedian 1991; 

Hornberger et al. 1992): 
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where c is the aqueous concentration of bacteria (cells ml-1), s is the concentration of 

bacteria on the solid phase (cells ml-1), x is the distance from the surface of the column 

(L),  t is time from initial input of bacteria (T), D is the dispersion coefficient (L2 T-1), v is 

the interstitial pore water velocity (L T-1), k1 is the reversible attachment rate (T-1), k2 is 

the detachment rate (T-1), and k3 is the irreversible attachment rate (T-1).  Eq. 2 accounts 

for first-order attachment and detachment processes (Harvey and Garabedian 1991).  

Fitted rates were obtained for each column.  These estimated parameters are useful for 

analyzing trends in experiments.   

Three parameters, reversible and irreversible attachment and detachment were 

estimated using the above equations, therefore this model is referred to hereafter as the 

three-parameter model.  A second model that estimated reversible attachment and 

detachment and did not account for irreversible attachment was also fit to the observed 
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data using a modified Eq. 1 (the irreversible attachment term, , was set to zero).  The 

second model is referred to hereafter as the two-parameter model. 

3k

Three factor ANOVAs were performed to determine the effects of the three 

treatments, including bacteria state, grain coatings, and ionic strength, on the parameters 

of duplicate experiments that were estimated by the two models.  The Ryan-Einot-

Gabriel-Welsch Multiple Range Test was used for pairwise comparisons.  Single factor 

ANOVAs were performed on parameters derived by the three-parameter model to 

examine the difference between “live” and “dead” cells for each treatment and to also 

examine changes in parameters of “live” and “dead” cells separately for each treatment.  

Results below the 0.05 confidence level were considered significant, and the means of 

duplicate experiments were reported. 

Sensitivity analysis of both models was performed in a method similar to that 

employed by Zhang et al. (2001).  For each simulation, the parameters were held constant 

while one was altered to demonstrate the effect of individual parameters on BTC shapes.   

For both conservative and bacterial tracer experiments, model efficiency (E), 

which is similar to R2 in linear regression, was calculated in the models to determine 

goodness of fit of fitted results to observed values (Bolster 2000; Hornberger et al. 1992)  
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where r is the residual between model prediction and observation, si  is the ith observed 

concentration on the solid phase, and savg  is the average of the observed concentrations, 

with efficiencies of 1 indicating a perfect fit and 0 a poor fit of the models to the data. 
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Model efficiencies were averaged for duplicate experiments and E values for the two-

parameter model fits were compared to experimental duplicate means of E values for the 

three-parameter model.   

 

Protein Analysis 

To determine if the protein signature of “live” cells was different than that of 

“dead” cells, the protein profiles of “live” and “dead” cells were compared by performing 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to separate 

proteins by molecular weight as described by Laemmli et al. (1970) and Shapiro et al. 

(1967).  This method was chosen because separating proteins by molecular weight using 

SDS-PAGE is an effective way to determine if there are differences in protein profiles.  

Proteins of the same molecular weight cannot be differentiated by this method. This level 

of precision, however, was not necessary to determine if there were general differences 

between samples.  The procedure involves denaturing all proteins to the same linear 

shape using SDS, a detergent that dissolves cell membranes and covers cell proteins with 

a negative charge.  Samples are injected into wells in an electrophoresis apparatus which 

creates an electrical current and pulls the negatively charged proteins through a 

polyacrylamide gel towards a positive charge.  Proteins with lower molecular weights 

migrate through gels faster.  The electrophoresis is stopped before proteins reach the 

bottom of the gel so that when stained later with Coomassie Blue, dark bands will be 

revealed indicating the distance each protein has migrated.  To calculate molecular 

weights of proteins within each sample, the resulting bands are compared to the bands of 

known proteins of a simultaneously run molecular weight standard.   
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To prepare samples for analysis, a set of coated sand column experiments was 

conducted using unlabeled bacteria.  Columns were packed with Fe-coated sands in 0.001 

M KCl buffer solution.  A bacterial pulse, prepared as described above, of “live” cells 

was run through one column and “dead” cells through the other.  One sample was 

collected from each of the “live” and “dead” influent solutions for the protein analysis.  

In addition, approximately 6 effluent tubes from each column were combined and 

analyzed.  To determine if formaldehyde fixation affected protein profiles of “dead” cells, 

the cell culture rendered “dead” by boiling previously for microscopy observations was 

also analyzed for comparison. 

To remove cellular debris, all samples were centrifuged at 12,000 x g for 20 min, 

and 0.5 to 1 ml of the supernatant were extracted and combined with 4x SDS Treatment 

Sample Buffer (Bio-Rad Laboratories, Inc., Hercules, CA).  To denature proteins, 

samples were heated at 90°C for 5 min, and 30 µl from each was pipetted into 0.1 cm x 

10 cm x 8 cm sample wells of a 10% Tris-Glycine Pre-cast iGel (Gradipore Limited, 

Australia) for protein separation by SDS-PAGE using a Mighty Small II SE 250/SE260 

(Hoeffer, San Francisco, CA) filled with Tris-Glycine running buffer (Bio-Rad 

Laboratories, Inc.) at pH 8.3.  This procedure separated proteins of whole cell lysate by 

molecular weight, not by isoelectric point because of the negative charge of the buffer.  

For molecular weight estimations, the first well was filled with 20 µl of broad molecular 

weight range unstained SDS-PAGE standard (Bio-Rad Laboratories, Inc.).   

The samples were run through the iGel for approximately 90 min at 190-volts and 

cooled with flow through tap water.  The iGel was removed and stained in Coomassie 

Blue R-250 (Bio-Rad Laboratories, Inc.) for 45 min.  The iGel was then rinsed in DIW, 
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shaken in SDS-PAGE destain (Bio-Rad Laboratories, Inc.) overnight and stored in 10% 

aqueous glycerol.  In order to estimate the molecular weights of the proteins in the 

samples, the migration of each band was compared to the migration of the protein 

standards of known molecular weights in the molecular ladder.
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III. RESULTS 

  

Column Experiments 

The tails and peaks of the breakthrough curves (BTCs) were examined to 

determine experimental treatment effects on attachment and detachment within columns.  

BTC tailing, which indicates a lack of irreversible attachment, was observed in all 

experimental runs (Figures 5a-5d).  Higher tailing indicates lower irreversible attachment, 

greater reversible attachment, and higher concentrations of cells recovered in the effluent.  

C/Co was higher for “live” E. coli cells versus “dead” cells in all BTC tails except for one 

duplicate of uncoated sand at low ionic strength.  Tail height varied between some 

experimental duplicates, especially those using low ionic strength solution or “dead” 

cells, but duplicates were very similar for most experiments using “live” bacteria.  This 

lack of replication was obvious between duplicates, but there was not much variability 

observed within individual breakthrough curves from sample point to sample point. 

Detachment is indicated by the slope of the BTC tails, with steeper slopes indicating 

greater detachment.  Slopes seemed to be similar for all experiments, indicating that 

detachment did not vary with experimental treatments.  Slopes were similar between 

most experimental duplicates. 

In order to verify the accuracy of the radiolabel method as a means for 

enumeration of BTC tails and to verify that “dead” bacterial concentrations were lower 

than “live” cells as indicated from scintillation counting, bacterial tail concentrations 
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were observed under fluorescent and phase microscopy.  Concentrations of “live” and 

“dead” cells within BTC tails were too low to observe under fluorescent or phase  

microscopy, however.  To determine “live” bacterial concentrations during tailing over 

time, effluent samples were plated.  “Live” cell concentrations were nearly 600 colonies 

ml-1 after 2 PV, 200 after 3 PV and 10 colonies ml-1 after 10 PV in coated sand 

experiments at both high and low ionic strengths.  Concentrations were not detected by 

plating methods after 15 PV.  BTC tails were not enumerated by plating in uncoated sand 

experiments.  Some tailing of conservative tracers was observed following breakthrough 

because low concentrations of the conservative tracer were observed in influent for the 

first few PVs (Figures 6 and BF-1a to BF-1g).  This tailing was minimal compared to 

bacterial tailing, however (Figures 6 and BF-1a to BF-1g).     

BTC peaks were analyzed as they are indicators of cell attachment, with lower 

peaks indicating greater attachment and lower cell concentrations detected in the column 

effluent.  Detachment is not reflected by peak height.  BTC peaks of coated sand 

experiments were an order of magnitude lower than uncoated sand BTC peaks, with 

coated sand experiments yielding peak C/Co duplicate means from 0.011 to 0.017 and 

uncoated sand experiments yielding peak C/Co means from 0.64 to 0.85 (Table 1 and 

Figures 5a-5d).  Peaks were similar between experimental duplicates.  Multiple BTC 

peaks were observed in coated sands, with a more pronounced second peak at low ionic 

strength (Figures 5c and 5d).  Multiple peaks were observed for duplicate experiments, 

but the height of the lower peak varied between duplicates.  Conservative tracers do not 

react or interact with media surfaces, therefore, complete breakthrough of conservative 

tracers was always observed.  C/Co peaks of 3[H] were always between 0.95 and 1.0.  
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Additionally, conservative tracer peaks occurred at the same time and were the same 

width as bacterial BTCs, which indicated that early or late bacterial breakthrough was not 

a factor in these experiments (Figures 6 and BF-1a to BF-1g).    

Results from a three factor ANOVA indicated that the fraction of E. coli cells 

recovered in column effluent was significantly lower in coated sands than in uncoated 

sands by an order of magnitude (p<0.0001) (Table 2).  This supports the observation that 

BTC peaks of coated sand experiments were noticeably lower.  The fraction of cells 

recovered in effluent from coated sand experiments ranged from 0.01 to 0.06 and in 

uncoated sand experiments from 0.64 to 1.0.  There was no significant difference 

between the fraction of “live” or “dead” cells recovered (p>0.05) or between fractions 

recovered from experiments using solutions of high or low ionic strength (p>0.05).  

Although this contradicts observations that tailing of “live” cells was higher than “dead” 

cells in BTCs, this can be explained by the fact that the fraction recovered in the column 

effluent accounted for the bacterial concentrations in both the peaks and tails of BTCs.  

The fraction recovered within BTC tails was therefore analyzed separately using a second 

three factor ANOVA.  Fraction recovered within BTC tails of “live” cells was 

significantly higher than “dead” cells (p<0.05), which supports the observation that 

tailing was generally higher for “live” cells in BTCs.  There were no significant 

differences in the fraction of tailing E. coli cells recovered from coated and uncoated 

sand experiments or experiments using low or high ionic strength (p>0.05) (Table 3).  

There were no significant interactions found between the three treatments for either 

ANOVA (p>0.05).     
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The ability of the bacteria cells to retain the radiolabel throughout the duration of 

experiments was tested by quantifying the amount of cell-associated label at the 

beginning and end of each experiment.  Over the course of 12 hours, the “live” and 

“dead” cultures used as influent pulses both lost radiolabel over the course of some of the 

experimental runs (Table 4). “Live” cells lost between 0 to 16% and “dead” cells lost 

from 0 to 24% of the radiolabel.  Note that the cultures used as the influent bacterial 

pulses were measured to determine label loss, and that these high cell concentrations 

were only injected into columns during the first 0.5 PV of experiments.  When effluent 

samples from an experiment using uncoated sand in low ionic strength solution were 

measured immediately and again four days later, label loss did not always occur (Table 

5).  Therefore, it was not clear if label loss was a factor in BTC results.   

 

 

Grain Ionic "Live" E. coli  "Dead" E. coli 
coating Strength C/Co  C/Co

Uncoated Low 0.85 (0.04)  0.80 (0.17) 
  High 0.64 (0.05)  0.66 (0.06) 
       
Coated Low 0.015 (0.005)  0.011 (0.001) 
  High 0.015 (0.005)  0.017 (0.004) 

Table 1.  Mean peak C/Co (standard errors) of experiment duplicates.  Peak C/Co was an 
order of magnitude higher in experiments using uncoated sands then coated sand 
experiments.  “Dead” cells were fixed with 0.5% final concentration formaldehyde prior 
to injection. 
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 Treatment Fraction p-value 
  recovered   
"Live" cells 0.42 0.55 
"Dead" cells 0.39  
   
Uncoated grains 0.78 <0.0001
Coated grains 0.03  
   
Low IS 0.45 0.15 
High IS 0.37   

Table 2.  Average fraction of E. coli cells recovered in column effluent analyzed by a 
three factor ANOVA for all treatments.  P-values in bold indicate significant differences 
(p<0.05).  The fraction of cells recovered was significantly lower for experiments using 
coated sands than for uncoated sand experiments.   
 
 
Treatment Fraction p-value
  recovered   
"Live" cells 0.022 0.02 
"Dead" cells 0.008  
   
Uncoated grains 0.016 0.69 
Coated grains 0.014  
   
Low IS 0.015 0.90 
High IS 0.015   

Table 3.  Average fraction of E. coli cells recovered in tail effluent analyzed by a three 
factor ANOVA for all treatments.  P-values in bold indicate significant differences 
(p<0.05).  The fraction of cells recovered was significantly higher for experiments using 
“live” E. coli cells than for experiments using “dead” cells.   
 

Grain  Ionic  “Live” “Dead” 
Coating Strength E. coli E. coli 
Uncoated Low 0.88 (0.23) 1.01 (0.090) 
  High 0.84 (0.025) 0.76 (0.005) 
        
Coated Low 1.0 (0.090) 0.90 (0.29) 
  High 1.0 (0.025) 0.78 (0.21) 

Table 4.  Means for duplicate experiments for fraction (standard errors) of radiolabel 
retained by influent pulses of “live” and “dead” E. coli cells over time.  Some label loss 
over time was observed.   
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"Live"  
E. coli 

"Dead" 
E. coli 

Pore 
Volumes 

0.78 1.00 1 
1.00 1.38 6 

Table 5.  The fraction of radiolabel retained by effluent concentrations of “live” and 
“dead” E. coli cells transported through uncoated sand at low ionic strength.  Effluent 
was sampled immediately and again after 4 d.  Samples were removed and enumerated 1 
PV and 6 PV after experiment commencement.   
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Figure 5a.  Observed duplicates (circles versus triangles) of breakthrough of “live” (closed symbols) and “dead” (open symbols) E. 
coli HCB 136 cells through laboratory columns packed with uncoated quartz sand in low ionic strength buffer solution.  “Dead” cells 
were fixed with 0.5% final concentration formaldehyde prior to injection. Concentrations of “dead” cells were often lower than that of 
“live” cells within the tail. 
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Figure 5b.  Observed duplicates (circles versus triangles) of breakthrough of “live” (closed symbols) and “dead” (open symbols) E. 
coli HCB 136 cells through laboratory columns packed with uncoated quartz sand in high ionic strength buffer solution.  
Concentrations of “dead” cells were often lower than that of “live” cells within the tail. 
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Figure 5c.  Observed duplicates (circles versus triangles) of breakthrough of “live” (closed symbols) and “dead” (open symbols) E. 
coli HCB 136 cells through laboratory columns packed with coated quartz sand in low ionic strength buffer solution.  Concentrations 
of “dead” cells were often lower than that of “live” cells within the tail.  Multiple peaks were observed in coated sands. 
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Figure 5d.  Observed duplicates (circles versus triangles) of breakthrough of “live” (closed symbols) and “dead” (open symbols) E. 
coli HCB 136 cells through laboratory columns packed with coated quartz sand in high ionic strength buffer solution.  Concentrations 
of “dead” cells were often lower than that of “live” cells within the tail.  Multiple peaks were observed in coated sands. 
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Figure 6.  Observed breakthrough curves for duplicates (circles versus triangles) of conservative tracer experiments (closed symbols) 
and duplicate bacteria experiments (open symbols) using “live” E. coli cells in uncoated quartz sand at low ionic strength. The solid 
line represents the best fit of the model to the conservative tracer duplicates.  Tailing of the conservative tracer was noticeably 
minimal compared to the extended tailing of bacteria over time. 
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In order to determine if either growth or death occurred throughout the duration of 

experiments, cell concentrations of the cultures used as influent pulses were enumerated 

at the beginning and end of each experiment.  Bacterial concentrations did not increase or 

decrease during column experiments, therefore it was assumed that growth or death did 

not affect results.  Concentrations determined by plating “live” E. coli cells on TSA were 

approximately 1-2 x 107 colonies ml-1 at the beginning and end of each experiment.  

“Dead” cell concentrations were similar to “live” concentrations.  Although “dead” cells 

did not grow on TSA and therefore could not be enumerated via plating, enumeration 

using fluorescent microscopy did reveal similar initial “live” and “dead” cell counts.   

To determine if formaldehyde fixation affected cells, bacterial cultures used as 

influent pulses were viewed by phase microscopy.  Neither “live” nor “dead” cells 

appeared to have lysed (Figures 7a and 7b).  Fixing bacteria with formaldehyde may have 

had some effect on cell sizes, although it was not possible to verify this by observing 

cells with phase microscopy (Figures 7a and 7b).   
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a     
 

b    
 
Figure 7.  “Live” E. coli cells viewed by phase microscopy at 1000x (a) and “dead” E. 
coli cells at 1000x (b).  “Dead” cells may have been larger than “live” cells.   
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Model Fits 

Velocity and dispersion were estimated by fitting the advection-dispersion 

equation to conservative tracer breakthrough curves in order to later incorporate the two 

parameters into the equations used to model bacterial breakthrough.  Estimated parameter 

values derived by fitting the model to the conservative tracers and averaged for 

experiment duplicates spanned a mean velocity of 0.31 to 0.32 cm min-1 and covered 

dispersion values of 0.011 to 0.015 cm2 min-1 with standard errors 0 to 0.01 for velocity 

and 0.001 to 0.004 for dispersion (Table 6).  Model efficiencies (E) were calculated in 

order to determine goodness of fit of the model to the observed conservative tracer BTCs.  

Model efficiency ranged from 0.99 to 1.0 on a scale of 0 to 1 for conservative tracer 

experiments.  Zero represents a poor fit and 1 represents a perfect fit.   

The two- and three-parameter models were used to estimate attachment and 

detachment rates.  Model efficiencies were calculated in order to determine goodness of 

fit of the fitted data to the observed bacteria BTCs for both models.  Model efficiency (E) 

was averaged between experiment duplicates and the means ranged from 0.89 to 0.95 in 

the three-parameter model and from 0.75 to 0.93 in the two-parameter model (Table 7).  

The three-parameter model provided slightly superior fits to the observed data versus the 

two-parameter model for experiments using either “live” or “dead” E. coli cells (Table 7; 

Figures 8a-8h).  Examination of Figures 8e-8h reveals that neither model accounted for 

the multiple peaks observed in experiments using coated sands.  In addition, Figures 8a-

8h reveal that both models did not accurately simulate the slope of the BTCs immediately 

following curve peaks, the portion of the curve that represents elution of the initial 

concentration of bacteria after breakthrough (Figure 3, Section D).   
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Attachment and detachment rates were first derived by the two-parameter model 

and the results were averaged between experiment duplicates.  The resulting reversible 

attachment rate (k1) means ranged from 0.02 to 0.48 min-1 in uncoated sands and from 3.9 

to 4.9 min-1 in coated sands (Table 8).  Standard errors were 2 to 100% of mean k1 values.  

Detachment rate (k2) duplicate means ranged from 0.05 to 0.14 min-1 in uncoated sands 

and from 0.001 to 0.01 min-1 in coated sands for k2 with standard errors 20 to 100% of k2 

means.   

A three factor ANOVA was performed on k1 and k2 values that were derived using 

the two-parameter model.  Means of k1 were significantly lower for “live” than “dead” 

cells (p<0.05) (Table 9).  The two-parameter model estimations for k1 were higher in 

coated versus uncoated sand experiments (p<0.0001), yet there was no significant 

difference in k1 means between experiments using high or low ionic strength solutions 

(p>0.05).  There were no significant differences among all treatments for k2 means 

(p>0.05).  Additionally, there were no significant interactions found between the three 

treatments (p>0.05).    

Attachment and detachment rates were then derived by the three-parameter model 

and the results were again averaged between experiment duplicates.  Averages of k1 

ranged from 0.01 to 0.06 min-1 in experiments using uncoated sands and from 0.25 to 1.2 

min-1 in coated sands (Table 10).  Standard errors were 6 to 100% of mean k1 values.  

Mean k2 ranged from 0.07 to 0.18 min-1 in uncoated sands and from 0.10 to 0.21 min-1 in 

coated sands, with standard errors 5 to 56% of mean k2 values.  Lastly, irreversible 

attachment rate (k3) means ranged from 0.23 to 0.5 min-1 in uncoated sands and from 2.9 

to 4.8 min-1 in coated sand experiments, with standard errors 1 to 96% of mean k3 values. 
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Results of the three-parameter model analyzed by a three factor ANOVA 

indicated that “live” cell k1 means were significantly higher than k1 for “dead” cells 

(p<0.05).  This contradicts the result derived using the two-parameter model which 

indicated reversible attachment rates were significantly higher for “dead” cells than for 

“live” cells.  Alternatively, k3 means for “dead” cells were significantly higher than for 

“live” cells (p<0.05) (Table 11).  No significant differences were found in k2 means 

between “live” and “dead” cells (p>0.05).  Although k1 and k3 means were significantly 

higher in coated versus uncoated sand experiments (p<0.0001), there was no difference 

between coated and uncoated sands for k2 means (p>0.05).  Average k1 was significantly 

lower at low versus high ionic strength (p<0.05).  This contrasts results from the two-

parameter model in which there were no differences in k1 because of changes in ionic 

strength.  Overall, there were no significant differences in k2 or k3 means between 

experiments using high or low ionic strength (p>0.05).  Significant interactions were 

found between bacteria and sand coatings (p=0.007) and between bacteria and ionic 

strength (p=0.04) for k1.  Significant interactions were also found between bacteria and 

sand coatings (p=0.006) for k3.   

Single factor ANOVAs were performed to compare each treatment effect 

separately on “live” cell attachment and “dead” cell detachment rates.  Statistical analysis 

only determined significant differences between “live” and “dead” cells for k1 and k3 

means within coated sand experiments (p<0.05) (Table 12).  As a general trend, however, 

k3 means were generally lower for “live” versus “dead” cells for all treatments.  The 

single factor ANOVA comparing differences of “live” and “dead” cells separately on 

attachment and detachment rates indicated that k1, k2 and k3 means for “live” cells, were 
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always significantly higher in coated versus uncoated sand experiments (p<0.05), while  

for “dead” cells, k1 and k3 means were significantly higher in coated sand experiments 

(p<0.05) (Table 13).  There were no treatment effects of “live” or “dead” cells for any 

calculated parameter at high or low ionic strengths. 

 

 

   "Live"      "Dead"    
Grain 
Coating 

Ionic 
Strength 

Velocity 
(cm min-1) 

Dispersion 
(cm2 min-1) 

Velocity 
(cm min-1) 

Dispersion 
(cm2 min-1) 

Uncoated Low 0.32 (0.010) 0.011 (0.001) 0.32 (0.005) 0.012 (0.003) 
  High 0.32 (0.005) 0.012 (0.004) 0.32 (0.005) 0.011 (0.001) 
              
Coated Low 0.31 (0.005) 0.015 (0.001) 0.32 (0.005) 0.014 (0.003) 
  High 0.32 (0.000) 0.014 (0.001) 0.32 (0.005) 0.013 (0.001) 

Table 6.  Mean fitted values (standard errors) for velocity and dispersion for the 
conservative tracer experiment duplicates run for columns to which a pulse of “live” or 
“dead” E. coli cells was later introduced. 
 
  
 
  "Live"    "Dead"   
Grain Ionic E. coli    E. coli   
Coating Strength 2-parameter 3-parameter 2-parameter 3-parameter 
Uncoated Low 0.91 (0.010) 0.91 (0.010)  0.88 (0.005) 0.89 (0.010) 
  High  0.93 (0.000) 0.94 (0.000)  0.89 (0.020) 0.92 (0.005) 
             
Coated Low 0.78 (0.045) 0.91 (0.035)  0.75 (0.005) 0.90 (0.020) 
  High 0.85 (0.015) 0.95 (0.015)  0.87 (0.030) 0.95 (0.005) 

Table 7.  Mean model efficiencies (E) (standard errors) for duplicate experiments 
demonstrating goodness of fit of the two- and three-parameter models to observed data.  
The three-parameter model provided slightly superior fits than the two-parameter model, 
particularly for experiments using Fe-coated sands.   
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  "Live" E. coli   "Dead" E. coli 
Grain 
Coating 

Ionic 
Strength 

K1 
(min-1) 

k2 
(min-1)   

k1 
(min-1) 

k2 
(min-1) 

Uncoated Low 0.02 0.08   0.48 0.14 
    (0.01) (0.02)   (0.48) (0.14) 
  High 0.31 0.05   0.33 0.08 
    (0.28) (0.05)   (0.32) (0.08) 
              
Coated Low 4.2 0.01   4.8 0.001 
    (0.39) (0.002)   (0.16) (0.0002) 
  High 3.9 0.01   4.9 0.004 
    (0.16) (0.002)   (0.08) (0.002) 

Table 8.  Mean fitted values (standard errors) for duplicate experiments for reversible 
attachment (k1) and detachment (k2) rates derived using the two-parameter model.   
 
 
 
Treatment k1 (min-1) p-value   k2 (min-1) p-value 
"Live" cells 2.1 0.02  0.04 0.63 
"Dead" cells 2.6   0.06  
      
Uncoated grains 0.29 <0.0001  0.09 0.09 
Coated grains 4.5   0.006  
      
Low IS 2.4 0.95  0.06 0.64 
High IS 2.4     0.04   

Table 9.  Mean fitted values for reversible attachment (k1) and detachment (k2) rates 
derived using the two-parameter model and analyzed using a three factor ANOVA for all 
experimental treatments.  P-values in bold indicate significant differences (p<0.05).  
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Grain  Ionic "Live" E. coli    "Dead" E. coli   
Coating strength k1 (min-1) k2 (min-1) k3 (min-1)  k1 (min-1) k2 (min-1) k3 (min-1) 
Uncoated Low 0.03 0.08 0.23  0.03 0.18 0.47 
    (0.01) (0.02) (0.02)  (0.03) (0.10) (0.45) 
  High  0.06 0.07 0.50  0.01 0.13 0.45 
    (0.01) (0.03) (0.05)  (0.004) (0.04) (0.19) 
                 
Coated Low 0.77 0.21 3.5  0.25 0.20 4.8 
    (0.04) (0.05) (0.42)  (0.07) (0.01) (0.16) 
  High 1.2 0.14 2.9  0.55 0.10 4.5 
    (0.19) (0.02) (0.03)  (0.25) (0.03) (0.28) 

Table 10.  Mean fitted values (standard errors) for duplicate experiments for reversible attachment (k1), detachment (k2), and 
irreversible attachment (k3) rates derived using the three-parameter model.   
 
 
Treatment       k1 (min-1) p-value  k2 (min-1) p-value k3 (min-1) p-value 
"Live" cells  0.52 0.005  0.13 0.46  1.8 0.003 
"Dead" cells 
 

 0.21 
 

    
   

    
     

   
     

0.15
 

  2.5
 

 
   

Uncoated grains 
 

 0.03 <0.0001 0.11 0.17
 

 0.41 <0.0001
Coated grains
 

0.70
 

 0.16
 

 3.9
 

 
   

Low IS  0.27 0.04 0.17 0.11  2.2 0.40
High IS   0.46     0.11    2.1   

Table 11.  Mean fitted values for reversible attachment (k1), detachment (k2), and irreversible attachment (k3) rates derived using the 
three-parameter model and analyzed using a three factor ANOVA for all experimental treatments.  P-values in bold indicate 
significant differences (p<0.05).  
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Treatment   Parameter E. coli 
"Live"  "Dead"  

E. coli p-value
Uncoated Sand k1 0.04 (0.01) 0.02 (0.01) 0.28 
 k2 0.07 (0.01) 0.15 (0.05) 0.15 
 k3 0.37 (0.08) 0.46 (0.20) 0.67 
      
Coated Sand k1 1.0 (0.16) 0.40 (0.14) 0.03 
 k2 0.18 (0.03) 0.15 (0.03) 0.50 
 k3 3.2 (0.25) 4.6 (0.15) 0.003 
      
Low IS k1 0.40 (0.21) 0.14 (0.07) 0.29 
 k2 0.15 (0.04) 0.19 (0.04) 0.53 
 k3 1.9 (9.6) 2.6 (1.3) 0.66 
      
High IS k1 0.65 (0.35) 0.28 (0.18) 0.39 
 k2 0.10 (0.03) 0.12 (0.02) 0.80 
  k3 1.7 (0.69) 2.5 (1.2) 0.59 

Table 12.  Mean fitted values for “live” and “dead” cell reversible attachment (k1), detachment (k2), and irreversible attachment (k3) 
rates derived using the three-parameter model and analyzed using a single factor ANOVA for each treatment.  P-values in bold 
indicate significant differences (p<0.05).  Units are min-1. 
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Grain 
Coatings       

Ionic 
Strength     

Bacteria     Uncoated Coated p-value   Low IS High IS p-value 
"Live" E. coli k1 0.043 (0.011) 1.0 (0.16) 0.0009  0.40 (0.21) 0.65 (0.35) 0.56 
 k2 0.074 (0.015) 0.18 (0.030) 0.02  0.15 (0.043) 0.10 (0.026) 0.44 
 k3 0.37 (0.080) 3.2 (0.25) <0.0001  1.9 (0.96) 1.7 (0.69) 0.88 
          
"Dead" E. coli k1 0.022 (0.013) 0.40 (0.14) 0.03  0.14 (0.069) 0.28 (0.18) 0.50 
 k2 0.15 (0.047) 0.15 (0.031) 0.90  0.19 (0.043) 0.11 (0.021) 0.17 
  k3 0.46 (0.20) 4.6 (0.15) <0.0001   2.6 (1.3) 2.5 (1.2) 0.94 

Table 13.  Mean fitted values for reversible attachment (k1), detachment (k2), and irreversible attachment (k3) rates derived using the 
three-parameter model and analyzed by a single factor ANOVA for “live” or “dead” cell treatments.  P-values in bold indicate 
significant differences (p<0.05).  Units are min-1. 
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Figure 8a.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “live” 
E. coli cells in uncoated quartz sand at low ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model.  
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Figure 8b.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “dead” 
E. coli cells in uncoated quartz sand at low ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model.  
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Figure 8c.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “live” 
E. coli cells in uncoated quartz sand at high ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.   
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Figure 8d.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “dead” 
E. coli cells in uncoated quartz sand at high ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.   
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Figure 8e.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “live” 
E. coli cells in coated quartz sand at low ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.   
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Figure 8f.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “dead” 
E. coli cells in coated quartz sand at low ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.   
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Figure 8g.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “live” 
E. coli cells in coated quartz sand at high ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.   
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Figure 8h.  Observed (symbols) and fitted (lines) breakthrough curves for duplicate experiments (circles versus triangles) using “dead” 
E. coli cells in coated quartz sand at high ionic strength. The solid line represents the best fit of the three-parameter model and the 
dashed line represents the best fit of the two-parameter model. The three-parameter model was found to provide slightly superior fits 
to the observed data than the two-parameter model.
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Sensitivity Analysis 

Sensitivity analysis of the two- and three-parameter models indicated that higher 

reversible attachment rates, k1, and irreversible attachment rates, k3, lowered the height of 

curve peaks and altered the height of curve tails; higher k1 increased the height of the tail 

while higher k3 lowered the height (Figures 9 and 10).  At the highest simulated value for 

k3, tailing was no longer observed.  As the detachment coefficient, k2, increased, the slope 

of BTC tails increased (Figure 11).  The detachment coefficient had no effect on curve 

peaks.   

 

Changes in k1

 
Figure 9.  Model simulations of the three-parameter model demonstrating the effect of 
changing reversible attachment rates, k1, on breakthrough curve peaks and tailing when 
detachment rates, k2, and irreversible attachment rates, k3, were held constant at 0.05.  
Removing k3 to simulate effects of the two-parameter model yielded the same curves. 
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Changes in k3

 
Figure 10. Model simulations of the three-parameter model demonstrating the effect of 
changing irreversible attachment rates, k3, on breakthrough curve peaks and tailing when 
reversible attachment rates, k1, and detachment rates, k2, were held constant at 0.05.  
Increasing k3 to 3.00 eliminated the BTC tail.   
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Changes in k2

 
Figure 11.  Model simulations of the three-parameter model demonstrating the effect of 
changing detachment rates, k2, on the slope of breakthrough curve tailing when reversible 
attachment rates, k1, and irreversible attachment rates, k3, were held constant at 0.05.  
Removing k3 to simulate effects of the two-parameter model yielded the same curves. 
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Protein Analysis 

Differences in protein profiles between “live” and “dead” E. coli cultures used as 

the influent bacterial pulses were observed using SDS-PAGE (Figure 12).  Bands, which 

represent the migration of proteins within each sample, with molecular weights of ~42 

and ~46 kDa were observed in both lanes 3 and 4 of the “dead” E. coli cells 

(formaldehyde fixed and boiled).  These bands were not observed in lane 2 of the “live” 

cell sample.  Concentrations of “live” and “dead” tails were too low to observe using 

SDS-PAGE, therefore protein profile of cells within the effluent from the columns could 

not be determined.   
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Figure 12.  Results of SDS-PAGE of E. coli cells. Differences between lane 2 a
identical lanes 3 and 4 are indicated with arrows.  Lane 1: Molecular mass stan
(kDa). Lane 2: “Live” E. coli cells. Lane 3: E. coli cells fixed with 0.5% final 
concentration formaldehyde prior to injection.  Lane 4: E. coli cells boiled in a 
for 15 min rendering them “dead”.  Bands with molecular weights of ~42 and ~
were observed in lanes 3 and 4 but not in lane 2.   
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IV. DISCUSSION 

 

Column Experiments 

It was interesting that there were no observed differences in detachment rates 

estimated by either model or in BTC tail slopes, which would indicate differences in 

detachment rates, between any of the experiment treatments.  It was expected that 

detachment rates would be lower in “live” cells than “dead” cells because the “live” cells 

would be actively involved in the attachment process, that detachment would be higher at 

low ionic strength because attractive van der Waals forces at high ionic strength would 

limit detachment, and that detachment would be lower in uncoated sands because 

uncoated sands are negatively charged and therefore are repulsive to Gram-negative 

bacteria.  The lack of difference in detachment rates between experiments may be 

because detachment is negligible under steady state conditions and is only a factor when 

conditions are altered.  This is important as it indicates that in a homogeneous aquifer 

system, detachment rates will be similar at steady state regardless of differences in the 

physicochemical properties tested here.  

As mentioned previously, the slow release of bacteria over time increases the 

potential for bacterial contamination of aquifers.  If detachment is indeed negligible at 

steady state, managers should consider limiting disturbances, such as aquifer pumping, in 

areas near septic systems or other systems that introduce bacteria into the subsurface in 

order to avoid perturbations that may foster detachment.  More research is necessary to 
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determine if detachment rates change in the presence of larger sized porous media or 

other strains of bacteria under steady state conditions.  At the field scale, perturbations in  

aquifer systems do occur and the subsurface is usually heterogeneous, therefore it is also 

necessary to understand the effect of system perturbations and heterogeneity on 

attachment and detachment.  In addition, the difference in kinetics between attachment 

and detachment rates may explain the failure of short term laboratory experiments to 

detect differences in detachment rates between experimental treatments, with time scales 

on the order of minutes and hours for attachment and days for detachment rates.  Short 

term laboratory experiments may not be able to detect the slower rates.  Attachment rates 

seemed to better explain the variability observed between experiments than detachment 

rates.   

The higher tailing in breakthrough curves (BTCs) of “live” bacteria observed for 

almost all experiments was opposite than expected.  Tailing indicates that portions of the 

cells retained were not irreversibly attached (Fontes et al. 1991), therefore this would 

indicate that less “live” cells attached irreversibly than “dead” bacteria.  Since greater 

tailing also indicates greater reversible attachment, this may also indicate that “live” cells 

are actively involved in reversibly attaching to surfaces.  Examination of the reversible 

and irreversible attachment rates as derived by the three-parameter model also indicated 

that k1 was significantly higher and k3 was significantly lower for experiments using 

“live” cells versus “dead” cells.  In addition, the fraction of “live” cells recovered from 

bacterial tailing was significantly higher than recovered “dead” cells.  In comparison to 

the observations of other studies, it was surprising that reversible attachment was higher 

for “live” cells and that less “live” cells irreversibly attached than “dead” cells.  Navarro 
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et al. (2002) observed that cell-bead binding properties were similar for both live cells 

and cells fixed with formaldehyde or Prefer fixative.  Hanein et al. (1995) examined 

attachment of live and paraformaldehyde fixed epithelial cells to calcium tartrate 

tetrahydrate crystals and conversely found that the attachment of fixed cells was weaker 

than for living cells.  Several possible explanations for higher reversible attachment rates 

and lower irreversible attachment rates for “live” cells include “live” cell nutritional 

requirements, and differences in “live” and “dead” cell surfaces and sizes.   

One possible explanation why fewer “live” cells remained irreversibly attached is 

that reversible attachment is a mechanism to combat starvation.  Van Loosdrecht et al. 

(1987b) similarly hypothesized that during starvation, detachment will reintroduce cells 

into pore water to increase the probability of cells reaching nutrient rich waters.  Hanein 

et al. (1995) reported that starved cells often increased surface stickiness in order to 

promote attachment, however.  Kjelleberg and Hermansson (1984) also observed 

increases in irreversible attachment to glass for several strains of bacteria under starvation 

conditions.  Even in the carbon-limited subsurface, cells can utilize stored carbon to 

produce extracellular polymers (Harvey 1991).  Additionally, van Schie and Fletcher 

(1999) reported that starved cells remain attached even after long periods of time.  In 

carbon-limiting environments, most bacteria will be associated with surfaces and the 

remainder of the population within the aqueous phase will be transported by physical 

processes (Murphy and Ginn 2000).  DeFlaun et al. (1990) found greater attachment 

when bacteria were removed from growth medium, indicating that attachment may 

indeed be related to nutrient conditions.  It was not clear if nutrient requirements were 

factors in these experiments. 
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The observed differences in the cell protein profiles of “live” and “dead” cells 

could illustrate why variations in transport were found between the two.  As previously 

mentioned, proteins in the outer membrane can be involved in attachment.  Özkanca and 

Flint (2002) found changes in the amounts of various outer membrane proteins in E. coli 

under extended periods of starvation.  Changes in outer membrane proteins because of 

the continued starvation of the “live” cells may explain why differences were observed in 

the protein profiles between “live” and “dead” cells and why differences were not 

observed between “dead” cells that were fixed or boiled.  The inability of “dead” Gram-

negative bacteria to undergo cell wall turnover, defined as the shedding of peptidoglycan 

during metabolism (Doyle and Sonnenfeld 1989), is another possible explanation for 

variations in cell protein profiles.  As “live” cells grow, cell walls are “shed”, and this 

process would not occur in “dead” cells.   

Others have speculated that fixation may affect cell surface properties.  The 

similarity in protein profiles between fixed and boiled cells, however, indicates that 

formaldehyde did not alter cell protein profiles in the current experiments.  In support of 

this, Hanein et al (1995) reported that cell surface molecules involved in attachment were 

not affected by fixation.  Conversely, Camesano and Logan (1998) observed that 

Pseudomonas fluorescens P17 rendered nonmotile via fixation transported farther than 

motile P17 at high velocities.  They speculated that this difference in transport might 

have been because fixation using acridine orange solution containing 2% formaldehyde 

could have changed the surface properties of P17.  In addition, Metz et al. (2004) 

reported that peptides and proteins underwent a range of chemical changes when treated 

with formaldehyde.   
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Hanein et al. (1995) speculated that the difference in adsorption between fixed 

and living cells was the inability of the fixed cell surfaces to interact in attachment.  They 

also reported, however, that fixation did not prevent cell attachment.  Becker et al. (2004) 

observed that percent recovery of Gram-positive bacteria actually increased in the 

presence of bead coatings, while recovery decreased for Gram-negative bacteria in 

column experiments.  They suggested that cell wall/surface interactions were affected by 

grain coatings. 

Differences between the sizes of “live” and “dead” cells may also explain 

differences in retention and detachment.  Although this could not be confirmed by 

viewing cells under microscopy, “live” cells could have become smaller the longer they 

remained without nutrients, while the “dead” cells remained the same size they were at 

the time of fixation.  Kjelleberg and Hermansson (1984) and Özkanca and Flint (2002) 

reported that cell volumes decreased as starvation time periods increased.  If the cells 

were different sizes, however, size exclusion effect would most likely have been 

observed.  Size exclusion occurs when larger cells breakthrough quicker as they move 

through the larger pore spaces where pore-water velocity is incidentally the highest 

(Fontes et al. 1991).  Early breakthrough was not observed, however, as demonstrated in 

Figures 6 and BF-1a to BF-1g.  Conservative tracer and bacterial breakthrough occurred 

simultaneously.  Additionally, when examining the transport of two sizes of bacteria, 

Fontes et al. (1991) observed broader BTC peaks for experiments with larger cells.  BTC 

peak widths again did not seem to differ between “live” and “dead” cells in the current 

experiments based on examination of Figures 6 and BF-1a to BF-1g.  Early breakthrough 
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and differences in peak widths were not observed.  Cell sizes, therefore, were probably 

similar and did not explain the difference between “live” and “dead” cell tailing.  

It was an unexpected finding that tailing was prevalent in all experiments using 

iron coated sands.  It was expected that almost complete removal of bacteria from the 

water column would occur because of oppositely charged grain surfaces, as this has often 

been reported in the literature (Mills et al. 1994; Scholl et al. 1990).  Indeed, the fraction 

of cells recovered was significantly less for column effluent of coated sand experiments 

than for uncoated sand experiments. There was no difference in the fraction of cells 

recovered in BTC tails, however, indicating no relationship between tailing and grain 

coatings.  In addition, detachment rates were similar between coated sand and uncoated 

sand experiments.  Becker et al. (2004) also observed lower than expected effects of iron-

oxyhydroxide coated glass beads on hindering bacterial breakthrough in comparison with 

previous experiments from their laboratory.  It may be possible that grain surfaces used in 

the current experiments were not uniformly coated with iron.  Some sites may have 

therefore remained uncoated and therefore negatively charged, creating a heterogeneous 

surface on to which bacteria attached at different rates.  Grains were not magnified to 

verify coating uniformity.  Silliman et al. (2001) performed experiments using 

heterogeneous media of varied sizes and coatings and also observed bacterial tailing, 

therefore partial coatings may explain the observed tailing in coated sand experiments.   

Lower BTC peaks for coated sand experiments have often been noted in the 

literature.  The observed multiple peaks in BTCs for coated sand filled columns were 

unexpected and resemble BTCs observed in column experiments filled with 

heterogeneous porous media (Fontes et al. 1991).  Fontes et al. (1991) packed laboratory 
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columns with a vein of coarse sand within fine sand.  They suggested multiple peaks 

were partially due to differences in transmissivity, with the coarse sand more 

transmissive than the fine sand.  Grain sizes were relatively homogeneous in the current 

experiments throughout the packed columns, with diameters ranging from ~350 to ~500 

µm, however.  It was not clear why multiple peaks were observed, and why the two peaks 

were observed only in coated sands and not in uncoated sand experiments.  

As expected, higher ionic strength increased bacterial reversible attachment.  

When estimated using the three-parameter model, average k1 was significantly lower at 

low versus high ionic strength.  Numerous studies have found that high ionic strength 

increases bacterial attachment to quartz sands due to van der Waals attraction (Bolster et 

al. 2001; Fontes et al. 1991).  In the presence of coated sands, ionic strength has been 

observed to have minimal effect on attachment (Bolster et al. 2001).   

The observed variability between experiment duplicates, especially in 

experiments using low ionic strength solution or “dead” cells, is important to consider for 

future column experiments.  This variability was probably because experimental 

conditions could have changed from experiment to experiment because of the variable 

nature of column packing or of using bacteria as the study organism.  Although the 

laboratory environment simplifies aquifer systems, repacking columns and regrowing 

new cultures of bacteria for each experimental duplicate are two factors that alone could 

have introduced variability or heterogeneity into experiments.  According to Brown et al. 

(2002), the preparation of porous media may be the problem if duplicate experiments are 

not identical.  There was not much variability between samples taken from the column 

effluent for each experiment, as they were taken frequently throughout the duration of 
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experiments, therefore it was not likely that there were experimental artifacts during 

individual experiments.  Variability may be representative of field conditions, however, 

as natural conditions are naturally heterogeneous.  Many labs find repeatability between 

duplicates and therefore do not always duplicate column experiments, however, evidence 

here supports the need for duplication.  It was not clear what caused the differences in tail 

heights between duplicates, but the difference in results underscores the fact that is 

important to run duplicates or triplicates when performing column experiments. 

 

Model fits 

It was expected that adding the third parameter to the modified advection 

dispersion equation would provide better model fits than using only two parameters.  

Indeed, incorporating an irreversible attachment rate into the three-parameter model 

better explained variations in BTC tailing, including higher reversible attachment and 

lower irreversible attachment rates for “live” cells than “dead” cells.  Model efficiency 

(E) was higher for the three-parameter model than the two-parameter model.  Standard 

errors of estimated parameters were high for both models, however, indicating that 

neither model estimated the parameters extremely well, as can be seen by comparing 

BTCs to fitted curves.  Standard errors were very low for parameters estimated for the 

conservative tracer indicating that estimates of interstitial pore water velocity and the 

dispersion coefficient were good.    

Curve-fitting when using the three-parameter model seemed to fit reasonably well 

to all sections of BTCs except the elution portion of the curves (Figure 3, Section D).  

Johnson et al. (1995) were also unable to account for the elution portion of their BTCs 
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when using an exponential model or a two-rate model.  They found that by incorporating 

irreversible attachment rates into their model they could account for elution portion, 

peaks and tails of BTCs.  For the current experiments, however, the inclusion of 

irreversible attachment rates did not enable all three curve sections to be well estimated.  

Johnson et al. (1995) concluded that it was necessary to account for heterogeneous 

sorption sites, allowing for fast initial bacterial detachment followed by slow release, in 

order to describe attachment and detachment.   

 

Conclusion 

The main hypotheses were that (1) “live” bacterial cells will have lower 

detachment rates because “live” cells will be actively involved in the 

attachment/detachment process, (2) iron coatings will generate lower detachment rates 

than uncoated sand due to the attraction of negatively charged bacteria to positively 

charged iron coated sand grains, and (3) higher ionic strength will reduce detachment 

rates because of stronger attractive van der Waals forces.  Detachment rates did not vary 

between any of the treatments, therefore none of the hypotheses were supported.  It was 

speculated that for the conditions tested here, detachment rates will be similar regardless 

of the composition of the aquifer if it is at steady state.  Detachment may occur mainly 

when system perturbations are introduced.  

Detachment rates were not different between “live” and “dead” cells, therefore 

first hypothesis was not supported.  It was surprising that rendering cells “dead” and 

therefore not biologically active did not seem to alter detachment rates.  “Live” E. coli 

cells were actively involved in the attachment process, however, and this may have been 
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because of nutritional requirements or cell protein modifications.  Greater tailing, and 

therefore greater reversible attachment rates, of “live” cells may have been due to the low 

carbon content within columns, as “live” cells would remain weakly attached in order to 

increase the potential for transport to more optimal growth conditions.  This may have 

important management implications.  For example, bacteria used for bioremediation 

should be starved prior to introduction into the subsurface to ensure that cells would 

remain mobile and transport more easily to nutrient rich areas, which for bioremediation 

purposes would be the areas of organic contamination.  More research should be done to 

investigate the biological factors affecting bacterial detachment, including examining 

other bacteria strains and investigating the involvement of outer membrane proteins in 

detachment. 

The second hypothesis was also not supported by experimental results.  

Detachment rates were not lower in coated sand than in uncoated sand experiments.  

Additionally, nearly complete adsorption of E. coli cells to Fe-coated sands has been 

frequently documented (Mills et al. 1994; Scholl et al. 1990) therefore the tailing 

observed in experiments using Fe-coated sands was unexpected.  It was speculated that 

this was because of the sand grains may have not have been uniformly coated with iron.  

Reversible and irreversible attachment rates were an order of magnitude higher in iron 

coated sand experiments, which indicates the removal of bacteria from the aqueous 

phase.  Using coated sands for aquifer filtration, such as in septic systems, may therefore 

improve aquifer filtration.  The results indicate, however, that coated sands would not be 

provide complete removal of bacteria from the aqueous phase and therefore would need 

to be combined with other treatments. 
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The third hypothesis was also not supported by the experiments.  Changes in ionic 

strength did not significantly affect detachment rates.  Attachment rates were lower in at 

low ionic strength, however.  Supporting this finding, Mills et al. (1994) observed an 

order of magnitude increase in attachment when ionic strength was increased by one 

order of magnitude.   

The attachment and detachment rates compared here were derived by two models.  

Other models may have estimated the parameters differently.  Model fits to the observed 

data, especially tail height and slope, were improved by adding a parameter into the ADE 

to account for irreversible attachment.  Neither model simulated all portions of the BTCs, 

specifically the elution portion of the curves.  The current research underscores the need 

to develop better models to describe the detachment process under steady state 

conditions.   

 The factors affecting detachment of bacteria from saturated porous media are not 

well understood.  Detachment rates are slower than attachment rates and can occur over a 

period of days.  The slow release of bacteria from the solid phase into the aqueous phase 

increases the opportunity for bacterial growth should cells be transported to areas rich in 

nutrients.  Understanding the conditions in which detachment occurs is necessary for the 

prevention of groundwater contamination.   
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APPENDIX A 

 

Bacteria Preparation 

Several preliminary tests were performed to determine the most efficient method 

for labeling bacteria with 3[H] for use in column experiments.  Cultures were prepared 

using the backwashing procedure (see Materials and Methods section) employed by 

Camesano and Logan (1998) and were compared to cultures that were not backwashed.  

Briefly, backwashing of cells consisted of capturing 3[H]-labeled bacteria on 0.2-µm pore 

size, 47-mm diameter membrane filters to remove any label that was not incorporated 

into the bacterial cells. The filters were then flipped over and buffer water was passed 

through the filters via vacuum filtration to dislodge the captured bacteria.  Cells that were 

not backwashed were filtered through 0.2-µm pore size, 25-mm diameter, membrane 

filters immediately before enumeration in order to remove the unincorporated label.  The 

filters were placed in scintillation vials and enumerated.  Label loss over time was 

calculated and results between treatments were compared. 

Although concentrations of incorporated label were lower when the backwashing 

procedure was used, less label appeared to be lost over time using this method (Figure 

AF-1).  This procedure was also less time consuming since backwashing essentially pre-

filters the culture, removing excess label prior to the experiment in order to avoid the 

need to filter every effluent sample to remove the excess.    
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Figure AF-1.  Comparison of two methods for enumeration of 3[H]-labeled E. coli cells 
and respective label loss over time.  Unincorporated label was removed prior to the 
experiment with the backwashed cells whereas unincorporated label was removed at each 
sampling time by collecting cells on 0.2 µm filters and counting the radioactivity on the 
filters. 
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  In another preliminary test, glucose was added to a 3[H]-labeled culture and 

compared to a glucose free 3[H]-labeled culture in order to determine if glucose enhanced 

label uptake.  Both cultures were filtered through 0.2-µm pore size, 25-mm diameter, 

membrane filters and enumerated over the course of 24 h.  E. coli cell concentrations 

with or without glucose amendment over time were within the same order of magnitude 

(Table A-1), therefore it was deemed unnecessary to amend cultures with glucose during 

the course of this study.   

 
 
      

Elapsed time 
Glucose 
addition No glucose 

(h) (dpm ml-1) (dpm ml-1) 
0 8.1E+05 1.1E+06 
1 1.8E+06 1.3E+06 
2.5 2.3E+06 3.8E+06 
4.5 2.0E+06 1.8E+06 
24 2.9E+06 2.3E+06 

 
Table AT-1.  Comparison of E. coli cell 3[H]-labeling methods over time.  Glucose was 
added to one culture to determine if glucose encourages label uptake and retention.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 101



APPENDIX B 
 

Breakthrough Curves for Conservative Tracer and Bacteria Experiments 
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Figure BF-1a.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “dead” E. coli cells in uncoated quartz sand at low ionic strength. The 
solid line represents the best fit of the model to the conservative tracer duplicates.  
Tailing of the conservative tracer is noticeably minimal compared to the extended tailing 
of bacteria over time. 
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Figure BF-1b.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “live” E. coli cells in uncoated quartz sand at high ionic strength. The 
solid line represents the best fit of the model to the conservative tracer duplicates.   
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Figure BF-1c.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “dead” E. coli cells in uncoated quartz sand at high ionic strength. The 
solid line represents the best fit of the model to the conservative tracer duplicates.   
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Figure BF-1d.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “live” E. coli cells in coated quartz sand at low ionic strength. The solid 
line represents the best fit of the model to the conservative tracer duplicates.   
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Figure BF-1e.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “dead” E. coli cells in coated quartz sand at low ionic strength. The solid 
line represents the best fit of the model to the conservative tracer duplicates.   
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Figure BF-1f.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “live” E. coli cells in coated quartz sand at high ionic strength. The solid 
line represents the best fit of the model to the conservative tracer duplicates.   
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Figure BF-1g.  Observed breakthrough curves for duplicates (circles versus triangles) of 
conservative tracer experiments (closed symbols) and bacteria experiments (open 
symbols) using “dead” E. coli cells in coated quartz sand at high ionic strength. The solid 
line represents the best fit of the model to the conservative tracer duplicates.   
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