Urbanization in Southeastern NH: Does it impact stream temperature?

> Jennifer Jacobs Gary Lemay

Environmental Research Group Department of Civil Engineering University of New Hampshire

Funding: USGS WRRC and US EPA

Stream Temperature

Spatial - Regional - Reach variations (< 1m) Temporal - Diurnal (daily) fluctuations Long term trends - Storm events

Data Source: NH Fish and Game

Conclusions

2

Overview

Methods

Experimental

Stream Temperature

Primary stream health indicator

Fisheries classification

Limited knowledge

Conclusions

3

Overview

Methods

Experimental

Urbanization Features

Land use change Impervious surfaces Road crossings Stormwater BMPs Groundwater withdrawals Wastewater discharge Dams

Overview

Experimental

Research Questions

How do culverts affect

- a. diurnal temperature ranges?
- b. mean temperatures?
- c. storm temperature surges?
- How does impervious area within a stream's watershed effect
 - a. diurnal temperature ranges?
 - b. mean temperatures?
 - c. storm temperature surges?

Overview

Road Crossings

Previous Research Thermal impacts not yet studied - Stream channel changes (Bates, 2003) Armoring Bank erosion Over 16,500 in NH as of 2008 Focus on culverts

Overview

Methods

Experimental

Modeling

Impervious Area

Previous Research

- Lowers stream health (Deacon et al., 2005)
- Elevated runoff temperatures (Herb et al., 2009)
- Stream temperature surges (Nelson and Palmer, 2007)
- Coastal NH Imperviousness
 - 4.00 % in 1990
 - 5.85 % in 2000
 - 6.91 % in 2005

Overview

Point Monitoring Experiment

- 9 study streams
 1.14 to 9.26 km²
 3.4 to 43% impervious
 1 to 11 road crossings
- Study period: 7/08 to 12/09
- Data collection
 - Stream temperature (15 min)
 - Hourly weather data
 - Stage where possible

Overview

Experimental

College Brook

Overview

Methods

Experimental

Modeling

9

Wednesday Hill Brook

Overview

Methods

Experimental

Experimental Results

Overview

Methods

Experimental

Point Monitoring Time Series

12

Q3 2009

Site-site and stream-stream variations

Overview

Experimental

Modeling

13

Hypothesis 1a Culverts will increase diurnal temperature ranges

Culverts do not appear to increase diurnal temperature ranges, refuting hypothesis

Hypothesis 1b

Culverts will not change mean temperatures

Some evidence of warming in winter, but generally inconclusive and cannot reject hypothesis

Hypothesis 1c Culverts will not change storm temperature surges

Overview

Methods

Experimental

Modeling

Hypothesis 1c Culverts will not change storm temperature surges

Road crossings are positively correlated with storm surge frequency and magnitude, refuting hypothesis

Hypothesis 2a

Impervious area will increase diurnal temperature range

Hypothesis reasonable for wintertime, not for summertime, inconclusive for other seasons

Hypothesis 2b

Impervious area will increase mean temperatures

Hypothesis 2c Impervious area will increase storm temperature surges

Overview

Methods

Experimental

Modeling

Hypothesis 2c

Impervious area will increase storm temperature surges

so hypothesis cannot be accepted or refuted

Summary of Findings

	Road Crossing	Impervious Area
Diurnal Range	NO	YES: Q1
Mean Daily	NO	YES: Q2 and Q3 w/ stratified drift
Storm Surges	YES	MAYBE: weak relationship

Overview

Methods

Experimental

Modeling

New Research Questions

What are the physical processes causing: - Culverts to impact temperature surges - Storm surges to differ among analysis methods Gradients, magnitude, frequency How can we predict thermal impacts of urbanization? Different issues for baseflow and stormflow - Thermal impact mitigation using BMPs

Overview

Experimental

Results in Context

Aquatic Impacts

- Warming from impervious area reduces coldwater habitat during baseflow periods
- Increased storm surge temperatures from road crossings have the potential to cause temperatures to exceed acute limits

Aquatic Impact Limitations

- Biota's temperature tolerances not fully understood
- Important temperature metrics are seldom available

Overview

Experimental

Acknowledgements

UNH Faculty - Tom Ballestero - Wil Wollheim Dr. Fred Day-Lewis, USGS Branch of Geophysics Funding - USGS Grant - EPA Grant James Sherrard Jr., Nick DiGennaro, Heidi Borchers, Danna Truslow, Carrie Vuyovich, Iulia Barbu, Bill Meagher, Logan Kenney, Matt Lavigne, Rusty Jones, Minha Choi

Overview

Experimental

- Boyd, M., and B. Kasper. 2003. Analytical methods for dynamic open channel heat and mass transfer: Methodology for heat source model Version 7.0.
- Bates, K., B. Barnard, B. Heiner, J. P. Klavas, and P. D. Powers. 2003. Design of Road Culverts for Fish Passage. Washington Department of Fish and Wildlife, Olympia, WA.
- Deacon, J. R., S. A. Soule, and T. E. Smith. 2005. Effects of Urbanization on Stream Quality at Selected Sites in the Seacoast Region in New Hampshire, 2001-03. US Geological Survey
- Herb, W. R., B. Janke, O. Mohseni, and H. G. Stefan. 2009. Runoff Temperature Model for Paved Surfaces. Journal of Hydrologic Engineering 14:1146-1155.
- Nelson, K. C., and M. A. Palmer. 2007. Stream temperature surges under urbanization and climate change: data, models, and responses. Journal of the American Water Resources Association 43:440-452.

Overview

Methods

Experimental

Modeling

Questions?

