Ecosystem Processes in a Piped Stream

Amanda Hope

Dr. Bill McDowell, Dr. Wil Wollheim

Defining a Piped Stream

For this study, **culverts** and **longer**:

- Run underground

 (under parking lots, roads, buildings, etc.)
- Fully enclosed within a pipe (6')
- No light source

Different from a Ditch

PIPED STREAM

Streams that flow in concrete/ asphalt ditches but are exposed to light and the surrounding landscape are called "ditches" in this study

DITCH

Potential Importance of Piped Streams

Lemay 2008 (personal comm.)

Why Study Piped Streams?

- Prevalence may increase with urbanization
- Little empirical evidence regarding biogeochemical processes in piped streams
- Restoration/management efforts

Elmore and Kaushal 2008, Walsh et al. 2005

Study Objectives

- Characterize ecosystem processes in a piped stream
 - Measure NH₄⁺ and PO₄³⁻ Uptake
 - Measure Ecosystem Metabolism
 - Other characteristics
 - Compare results from piped reaches to non-piped reaches

Pettee Brook, UNH Campus

Open (Reference) Reach

Downstream 1

(Metal)

Methods

250 m

Downstream 2

<u>Methods</u>

➤ Combined NH₄+/PO₄³⁻ solute addition using Br⁻ and Rhodamine as tracers

➤Upstream-Downstream O₂ change w/reaeration determined using SF₆

Hauer & Lamberti 2007, LINX Protocol (Potter, pers. comm.)

Ambient Concentrations

- •PO4-P: 3-12 ug/L
- •NO₃-N: 70-600 ug/L
- •Cl: 25-270 mg/L

Additional Reach Characteristics

<u>Reach</u>	Peak Light (lum/ft ²)	Peak H ₂ O Temp. (C)	k O ₂ (1/min)	Q (L/s)	Velocity (m/min)
Open (Reference)	3000	17	0	5	1.06
Pipe 1 (Concrete)	0	22	0.015	5.2	5.91
Downstream 1 (Open)	17000	22	0.015	5.2	3.53
Ditch (Stone, Open)	11000	22	0.015	27.4	7.5
Pipe 2 (Metal)	0	22	0.012	27.4	6.14

Discussion

- ❖ NH4⁺ and PO4³⁻ V_f values within range found in literature, although on low end (Hall *et al.* 2002, Ensign & Doyle 2006)
- Uptake was measured in piped stream reaches
- In some cases, uptake velocities in piped stream reaches were significantly higher than nearby open reaches
- Related to Energy Limitation? Sediments? Pools? Other characteristics???

- Ecosystem metabolism results similar to Mulholland *et al.* 2001
- Most reaches were heterotrophic
- *Related to Light? Temp? Nutrients? Other?
- First look at biogeochemical processes in piped stream reaches
- *Additional study needed

<u>Additional Research Questions</u> (2010 Field Season)

- What are NH₄⁺ and PO₄^{3−} uptake velocities during Open Canopy?
- ➤ Is there NO₃ uptake at summer baseflow?
- ▶ Is there DOC uptake at summer baseflow?
- Will my Ecosystem Metabolism results be supported by additional measurements?
- What are FBOM, Chl. a, and TSS/sediment amounts?

<u>Acknowledgements</u>

- Thank you! to my committee: Dr. Bill McDowell, Dr. Wil Wollheim, and Dr. Gretchen Gettel
- Jody Potter, Jeff Merriam, Adam Baumann, Michelle Daley, and Jeff Schloss for field/lab assistance, advice, and materials
- NH Water Resources Research Center for funding

amandajhope@gmail.com