Coupling a Groundwater Model and Nitrogen Concentration Data at the UNH Organic Research Dairy Farm

J. Matthew Davis
Jennifer Campbell
Department of Earth Sciences
University of New Hampshire
USDA Sustainable Agriculture Research and Education (SARE)

PIs: John Aber, Bill McDowell, Matt Davis

Location: UNH Organic Research Dairy Farm in Lee, NH

Project Objective: First phase is to measure all material and energy flows across the farm

Our Part: Characterize the hydrology (water budget / groundwater model)
LiDAR data: National Center for Airborne Laser Mapping (NCALM)
Hydrologic Monitoring

Records hydraulic head measurements every hour
West to East Cross-sectional View of the Back Field at the Burley-Demerrit Farm

- BD-15
- BD-14
- BD-12

Legend:
- Till
- Sand
- Clay
- Eliot Fm--Calcaceous quartzite and phyllite.
North-South Cross-sectional View at the Burley-Demerrit Farm

Legend:
- Clay
- Sand
- Till
- Eliot Fm – Calcaneous quartzite and phyllite.
Precipitation Rate (in/day)
Groundwater Elevations
Evapotranspiration
Calculated using Penman-Monteith
V-notch Weir
Parshall Flume
Streamflow at Watershed Outlet
Groundwater Contour Map:
Unconfined / Confined Aquifer

Lamprey River

Elevations in feet

Legend
- Wells
- Stream Gages

Unconfined Aquifer
Confined Aquifer
Development of Groundwater Model

• Objectives:
 1. Develop understanding of spatial distribution of groundwater recharge and factors that affect its magnitude
 2. Provide a platform for simulating solute fluxes
• Utilize near surface capabilities of MODFLOW 2005 (UZF Package)
Nitrate concentrations [mg/L]

Source: McDowell
<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Nitrogen (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hay/Silage/Baleage</td>
<td>2060</td>
</tr>
<tr>
<td>2</td>
<td>Grain</td>
<td>1799</td>
</tr>
<tr>
<td>3</td>
<td>Feed Additives</td>
<td>796</td>
</tr>
<tr>
<td>4</td>
<td>Deposition</td>
<td>381</td>
</tr>
<tr>
<td>INTERNAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Manure</td>
<td>6716</td>
</tr>
<tr>
<td>6</td>
<td>Hay/Silage/Baleage</td>
<td>1849</td>
</tr>
<tr>
<td>7</td>
<td>Forage</td>
<td>1256</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Milk</td>
<td>997</td>
</tr>
</tbody>
</table>

Gabriel Perkins & John Aber
Point Sources of Nitrogen

1. Manure compost pile
2. Pig waste lagoon (abandoned)
3. Scrapings from barn & feed area
Nitrate concentrations [mg/L]

Source: McDowell
Simulated concentrations match those observed in wells fairly well. However, is manure loading rate ~200 kg N/ year unrealistic?

Quasi-steady state (t=10 years)

Nitrate as “conservative” solute – no decay

Simulated concentrations match those observed in wells fairly well.

However, is manure loading rate ~200 kg N/ year unrealistic?
Simulated Nitrate [mg/L]

Quasi-steady state (t=10 years)

Denitrification as a first order decay process ($k=0.3 \, \text{yr}^{-1}$)

More realistic loading rate of 2000 kg/N per year.

Simulated concentrations in wells are much higher than observed.
Nitrate concentrations [mg/L]

<table>
<thead>
<tr>
<th>Location</th>
<th>^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-3 (4)</td>
<td>15.70</td>
</tr>
<tr>
<td>BD-7</td>
<td>6.30</td>
</tr>
<tr>
<td>BD-8</td>
<td>14.56</td>
</tr>
<tr>
<td>BD-10</td>
<td>13.54</td>
</tr>
<tr>
<td>Tributary</td>
<td>16.90</td>
</tr>
<tr>
<td>Stream</td>
<td>16.20</td>
</tr>
</tbody>
</table>

Sources: B. McDowell, A. Hristov
Conclusions & Future Work

- Spatial distribution of recharge is strongly dependent on depth to water table and ability of plants to utilize groundwater for ET.
- Need to:
 1) upscale high resolution (space and time) groundwater model to simulate long-term solute fluxes and
 2) characterize winter and spring conditions
- Preliminary solute transport simulations suggest that the system takes ~ 10 years to reach steady state.
- Source characterization will be one important component of resolving occurrence and rate of denitrification.